首页 | 本学科首页   官方微博 | 高级检索  
     

中国股市长记忆性与趋势变化研究——基于SEMIFAR-FIGARCH模型
作者单位:;1.天津财经大学理工学院;2.天津工业大学理学院
摘    要:文章对中国股市的长记忆性进行研究,在研究中将SEMIFAR模型与FIGARCH模型相结合,建立了既能反映收益率趋势变化情况又能描述收益率和波动长记忆特征的SEMIFAR-FIGARCH模型,利用该模型对我国沪、深两市的收益率和波动率的长记忆性及趋势变化进行实证分析,并与ARFIMA-FIGARCH、ARFIMA-HYGARCH模型结果比较拟合及预测效果。研究结果表明:我国沪、深两市的收益率和波动率均存在长记忆性;其收益率序列存在显著的趋势变化特征;SEMIFAR-FIGARCH模型的拟合和预测效果优于ARFIMA-FIGARCH、ARFIMA-HYGARCH模型,表明SEMIFAR-FIGARCH模型对我国股市有较好的模型解释能力和预测能力。

关 键 词:SEMIFAR-FIGARCH模型  趋势  长记忆  核估计方法

Study on the Lasting Memory of Chinese Stock Market and Its Tendency of Change Based on SEMIFAR-FIGARCH Model
Abstract:
Keywords:
本文献已被 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号