首页 | 本学科首页   官方微博 | 高级检索  
     

基于符号收益和跳跃变差的高频波动率模型
引用本文:马锋,魏宇,黄登仕. 基于符号收益和跳跃变差的高频波动率模型[J]. 管理科学学报, 2017, 20(10)
作者姓名:马锋  魏宇  黄登仕
作者单位:西南交通大学经济管理学院,成都,610031
基金项目:国家自然科学基金资助项目,教育部人文社会科学基金规划资助项目,四川省科技青年基金资助项目,四川省社会科学高水平研究团队资助项目,中央高校基金科研业务费专项资金资助项目
摘    要:基于符号收益率的视角,对现有的HAR-RV类及其跳跃扩展模型进行相应分解,构建新型的HAR-RV类波动率模型.进一步,结合符号收益和不同的跳跃识别检验方法,提出了包含符号跳跃变差的HAR-RV类模型,并利用样本外滚动窗预测技术和"模型信度设定"(MCS)检验法评价了各种新旧HAR-RV模型对我国沪深300股价指数波动的预测能力.结果表明:基于C_TZ跳跃识别检验的符号跳跃变差能显著改善波动率模型的短期预测能力,但在中长期波动预测时,符号跳跃变差未能明显提升HAR-RV类模型的预测精度;新提出的HAR-S-RV-TJ-TSJV模型和HAR-S-RV-TJ模型分别在对短期(未来1天)和中长期(未来5天和20天)的波动预测检验中,展现出了最高的预测精度.

关 键 词:高频波动率模型  跳跃  已实现半变差  符号跳跃变差

Forecasting the realized volatility based on the signed return and signed jump variation
MA Feng,WEI Yu,HUANG Deng-shi. Forecasting the realized volatility based on the signed return and signed jump variation[J]. Journal of Management Sciences in China, 2017, 20(10)
Authors:MA Feng  WEI Yu  HUANG Deng-shi
Abstract:This paper decomposes the HAR-RV model and its various extensions based on the signed return and signed jump variation.Furthermore, new HAR-type models including the signed jump variation are pro-posed, which are constructed by the different jump tests.The forecasting accuracies of the existing and new HAR-type models are evaluated according to the rolling window method and MCS test.The empirical results show that the new signed jump variation including the C_TZ test is a significant improvement in the model' s short horizon forecasting performance.However, in forecasting the medium and long horizons, the signed jump variation shows no substantial improvement in forecasting accuracies.Finally, our newly proposed models, HAR-S-RV-TJ-TSJV and HAR-S-RV-TJ, are the best forecasting models in short and medium and long hori-zons than others models discussed in this paper.
Keywords:high-frequency volatility models  jump  realized semi-variance  signed jump variation
本文献已被 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号