首页 | 本学科首页   官方微博 | 高级检索  
     


Kernel Density Estimation with Generalized Binning
Authors:M. Pawlak,&   U. Stadtmuller
Affiliation:University of Manitoba, Winnipeg,;University of Ulm
Abstract:We propose kernel density estimators based on prebinned data. We use generalized binning schemes based on the quantiles points of a certain auxiliary distribution function. Therein the uniform distribution corresponds to usual binning. The statistical accuracy of the resulting kernel estimators is studied, i.e. we derive mean squared error results for the closeness of these estimators to both the true function and the kernel estimator based on the original data set. Our results show the influence of the choice of the auxiliary density on the binned kernel estimators and they reveal that non-uniform binning can be worthwhile.
Keywords:accuracy    compressed data    density estimation    generalized binning    kernel estimator    mean squared error    non-parametric estimation    quantile process
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号