首页 | 本学科首页   官方微博 | 高级检索  
     


Automatic starting point selection for function optimization
Authors:S. P. Brooks  B. J. T. Morgan
Affiliation:(1) Institute of Mathematics and Statistics, University of Kent, CT2 7NF Canterbury, Kent, UK
Abstract:Traditional (non-stochastic) iterative methods for optimizing functions with multiple optima require a good procedure for selecting starting points. This paper illustrates how the selection of starting points can be made automatically by using a method based upon simulated annealing. We present a hybrid algorithm, possessing the accuracy of traditional routines, whilst incorporating the reliability of annealing methods, and illustrate its performance for a particularly complex practical problem.Now at the Statistical Laboratory, University of Cambridge, 16 Mill Lane, Cambridge, CB2 1SB, UK.
Keywords:Maximum likelihood  mixture models  simulated annealing  optimization  hybrid algorithm
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号