首页 | 本学科首页   官方微博 | 高级检索  
     


Online learning for quantile regression and support vector regression
Authors:Ting Hu  Dao-Hong Xiang  Ding-Xuan Zhou
Affiliation:1. School of Mathematics and Statistics, Wuhan University, Wuhan 430072, China;2. Department of Mathematics, Zhejiang Normal University, Jinhua, Zhejiang 321004, China;3. Department of Mathematics, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
Abstract:We consider for quantile regression and support vector regression a kernel-based online learning algorithm associated with a sequence of insensitive pinball loss functions. Our error analysis and derived learning rates show quantitatively that the statistical performance of the learning algorithm may vary with the quantile parameter ττ. In our analysis we overcome the technical difficulty caused by the varying insensitive parameter introduced with a motivation of sparsity.
Keywords:Quantile regression   Support vector regression   Insensitive pinball loss   Online learning   Reproducing kernel Hilbert space   Error analysis
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号