首页 | 本学科首页   官方微博 | 高级检索  
     


Nonparametric survival regression using the beta-Stacy process
Authors:Fabio Rigat  Pietro Muliere
Affiliation:1. Department of Statistics, University of Warwick, UK;2. Novartis Vaccines and Diagnostics, Siena, Italy;3. Department of Decision Sciences, Universita'' L. Bocconi, Italy
Abstract:A novel class of hierarchical nonparametric Bayesian survival regression models for time-to-event data with uninformative right censoring is introduced. The survival curve is modeled as a random function whose prior distribution is defined using the beta-Stacy (BS) process. The prior mean of each survival probability and its prior variance are linked to a standard parametric survival regression model. This nonparametric survival regression can thus be anchored to any reference parametric form, such as a proportional hazards or an accelerated failure time model, allowing substantial departures of the predictive survival probabilities when the reference model is not supported by the data. Also, under this formulation the predictive survival probabilities will be close to the empirical survival distribution near the mode of the reference model and they will be shrunken towards its probability density in the tails of the empirical distribution.
Keywords:Bayesian hierarchical models   Beta-Stacy process   Cerebral palsy   Markov chain Monte Carlo   Melanoma   Right censoring   Survival analysis
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号