首页 | 本学科首页   官方微博 | 高级检索  
     


An omnibus test of goodness-of-fit for conditional distributions with applications to regression models
Authors:Gilles R. Ducharme  Sandie Ferrigno
Affiliation:1. Équipe de Probabilités et Statistique, Institut de Mathématiques et de Modélisation de Montpellier, Université Montpellier II, Place Eugène Bataillon, 34095 Montpellier, Cedex 5, France;2. Équipe de Probabilités et Statistique, Institut de Mathématiques Elie Cartan, Université Henri Poincaré Nancy 1, B.P. 70239, F-54506 Vandoeuvre-lès-Nancy, Cedex, France
Abstract:We introduce an omnibus goodness-of-fit test for statistical models for the conditional distribution of a random variable. In particular, this test is useful for assessing whether a regression model fits a data set on all its assumptions. The test is based on a generalization of the Cramér–von Mises statistic and involves a local polynomial estimator of the conditional distribution function. First, the uniform almost sure consistency of this estimator is established. Then, the asymptotic distribution of the test statistic is derived under the null hypothesis and under contiguous alternatives. The extension to the case where unknown parameters appear in the model is developed. A simulation study shows that the test has good power against some common departures encountered in regression models. Moreover, its power is comparable to that of other nonparametric tests designed to examine only specific departures.
Keywords:Conditional distribution function   Cramé  r&ndash  von Mises statistic   Goodness-of-fit test   Local polynomial estimator   Regression model
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号