首页 | 本学科首页   官方微博 | 高级检索  
     


Estimation of the Mean of a Sensitive Variable in the Presence of Auxiliary Information
Abstract:Sousa et al. (2010 Sousa , R. , Shabbir , J. , Real , P. C. , Gupta , S. ( 2010 ). Ratio estimation of the mean of a sensitive variable in the presence of auxiliary information . J. Statist. Theor. Prac. 4 ( 3 ): 495507 .[Taylor & Francis Online] [Google Scholar]) introduced a ratio estimator for the mean of a sensitive variable and showed that this estimator performs better than the ordinary mean estimator based on a randomized response technique (RRT). In this article, we introduce a regression estimator that performs better than the ratio estimator even for modest correlation between the primary and the auxiliary variables. The underlying assumption is that the primary variable is sensitive in nature but a non sensitive auxiliary variable exists that is positively correlated with the primary variable. Expressions for the Bias and MSE (Mean Square Error) are derived based on the first order of approximation. It is shown that the proposed regression estimator performs better than the ratio estimator and the ordinary RRT mean estimator (that does not utilize the auxiliary information). We also consider a generalized regression-cum-ratio estimator that has even smaller MSE. An extensive simulation study is presented to evaluate the performances of the proposed estimators in relation to other estimators in the study. The procedure is also applied to some financial data: purchase orders (a sensitive variable) and gross turnover (a non sensitive variable) in 2009 for a population of 5,336 companies in Portugal from a survey on Information and Communication Technologies (ICT) usage.
Keywords:Absolute relative bias  Mean square error  Randomized response technique  Regression-cum-ratio estimator  Regression estimator
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号