Abstract: | AbstractIn this article, we revisit the problem of fitting a mixture model under the assumption that the mixture components are symmetric and log-concave. To this end, we first study the nonparametric maximum likelihood estimation (MLE) of a monotone log-concave probability density. To fit the mixture model, we propose a semiparametric EM (SEM) algorithm, which can be adapted to other semiparametric mixture models. In our numerical experiments, we compare our algorithm to that of Balabdaoui and Doss (2018 Balabdaoui, F., and C. R. Doss. 2018. Inference for a two-component mixture of symmetric distributions under log-concavity. Bernoulli 24 (2):1053–71.[Crossref], [Web of Science ®] , [Google Scholar], Inference for a two-component mixture of symmetric distributions under log-concavity. Bernoulli 24 (2):1053–71) and other mixture models both on simulated and real-world datasets. |