首页 | 本学科首页   官方微博 | 高级检索  
     


Optimal and Robust Designs for Estimating the Concentration Curve and the AUC
Authors:Mohamad Belouni  Karim Benhenni
Affiliation:1. Laboratoire Jean Kuntzmann (CNRS 5224)Université Joseph Fourier;2. Laboratoire Jean Kuntzmann (CNRS 5224)Université Pierre Mendes‐France
Abstract:The problem of interest is to estimate the concentration curve and the area under the curve (AUC) by estimating the parameters of a linear regression model with an autocorrelated error process. We introduce a simple linear unbiased estimator of the concentration curve and the AUC. We show that this estimator constructed from a sampling design generated by an appropriate density is asymptotically optimal in the sense that it has exactly the same asymptotic performance as the best linear unbiased estimator. Moreover, we prove that the optimal design is robust with respect to a minimax criterion. When repeated observations are available, this estimator is consistent and has an asymptotic normal distribution. Finally, a simulated annealing algorithm is applied to a pharmacokinetic model with correlated errors.
Keywords:AUC  autocorrelated errors  concentration curve  minimax  normality  optimal designs  optimal linear estimator  regression model  simulated annealing algorithm
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号