Abstract: | Length‐biased and right‐censored failure time data arise from many fields, and their analysis has recently attracted a great deal of attention. Two examples of the areas that often produce such data are epidemiological studies and cancer screening trials. In this paper, we discuss regression analysis of such data in the presence of missing covariates, for which no established inference procedure seems to exist. For the problem, we consider the data arising from the proportional hazards model and propose two inverse probability weighted estimation procedures. The asymptotic properties of the resulting estimators are established, and the extensive simulation study conducted for the evaluation of the proposed methods suggests that they work well for practical situations. |