首页 | 本学科首页   官方微博 | 高级检索  
     


Non‐parametric Copula Estimation Under Bivariate Censoring
Authors:Svetlana Gribkova  Olivier Lopez
Affiliation:1. Center for Computational Biology, Mines ParisTech, Institut Curie, U900 InsermSorbonne Universités, UPMC Université Paris VI, EA 3124, LSTA;2. Laboratoire de Finance et d'Assurance, ENSAE Paris Tech ‐ CRESTSorbonne Universités, UPMC Université Paris VI, EA 3124, LSTA
Abstract:In this paper, we consider non‐parametric copula inference under bivariate censoring. Based on an estimator of the joint cumulative distribution function, we define a discrete and two smooth estimators of the copula. The construction that we propose is valid for a large range of estimators of the distribution function and therefore for a large range of bivariate censoring frameworks. Under some conditions on the tails of the distributions, the weak convergence of the corresponding copula processes is obtained in l([0,1]2). We derive the uniform convergence rates of the copula density estimators deduced from our smooth copula estimators. Investigation of the practical behaviour of these estimators is performed through a simulation study and two real data applications, corresponding to different censoring settings. We use our non‐parametric estimators to define a goodness‐of‐fit procedure for parametric copula models. A new bootstrap scheme is proposed to compute the critical values.
Keywords:bivariate censoring  bootstrap  copula density  copula function  goodness‐of‐fit  Kaplan–  Meier estimator  non‐parametric estimation  survival analysis
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号