首页 | 本学科首页   官方微博 | 高级检索  
     


Adaptive Warped Kernel Estimators
Authors:Gaëlle Chagny
Affiliation:1. Laboratoire MAP5 (UMR CNRS 8145)Université Paris Descartes;2. LMRS (UMR CNRS 6085)Université de Rouen
Abstract:In this work, we develop a method of adaptive non‐parametric estimation, based on ‘warped’ kernels. The aim is to estimate a real‐valued function s from a sample of random couples (X,Y). We deal with transformed data (Φ(X),Y), with Φ a one‐to‐one function, to build a collection of kernel estimators. The data‐driven bandwidth selection is performed with a method inspired by Goldenshluger and Lepski (Ann. Statist., 39, 2011, 1608). The method permits to handle various problems such as additive and multiplicative regression, conditional density estimation, hazard rate estimation based on randomly right‐censored data, and cumulative distribution function estimation from current‐status data. The interest is threefold. First, the squared‐bias/variance trade‐off is automatically realized. Next, non‐asymptotic risk bounds are derived. Lastly, the estimator is easily computed, thanks to its simple expression: a short simulation study is presented.
Keywords:adaptive estimator  bandwidth selection  censored data  non‐parametric estimation  regression  warped kernel
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号