首页 | 本学科首页   官方微博 | 高级检索  
     


The statistical monitoring of a complex manufacturing process
Authors:M. Weighell   E. B. Martin  A. J. Morris
Affiliation: a University of Newcastle.
Abstract:This paper describes the development of a multivariate statistical process performance monitoring scheme for a high-speed polyester film production facility. The objective for applying multivariate statistical process control (MSPC) was to improve product consistency, detect process changes and disturbances and increase operator awareness of the impact of both routine maintenance and unusual events. The background to MSPC is briefly described and the various stages in the development of an at-line MSPC representation for the production line are described. A number of case studies are used to illustrate the power of the methodology, highlighting its potential to assist in process maintenance, the detection of changes in process operation and the potential for the identification of badly tuned controller loops.
Keywords:
本文献已被 InformaWorld 等数据库收录!
相似文献(共20条):
[1]、M., Weighell,E. B., Martin,A. J., Morris.The statistical monitoring of a complex manufacturing process[J].Journal of applied statistics,2001,28(3-4):409-425.
[2]、Enrique Del Castillo,James M. Grayson,Douglas C. Montgomery,George C. Runger.A review of statistical process control techniques for short run manufacturing systems[J].统计学通讯:理论与方法,2013,42(11):2723-2737.
[3]、Tao Chen,Julian Morris, Elaine Martin.Probability density estimation via an infinite Gaussian mixture model: application to statistical process monitoring[J].Journal of the Royal Statistical Society. Series C, Applied statistics,2006,55(5):699-715.
[4]、Thaung Lwin.Parameter estimation in first-order autoregressive model for statistical process monitoring in the presence of data autocorrelation[J].Journal of statistical planning and inference,2011,141(8):2556-2575.
[5]、George C. Runger,Frank B. Alt,Douglas C. Montgomery.Contributors to a multivariate statistical process control chart signal[J].统计学通讯:理论与方法,2013,42(10):2203-2213.
[6]、Ebrahim Mazrae Farahani,Rassoul Noorossana,Ghazaleh Rahimian.A statistical approach to social network monitoring[J].统计学通讯:理论与方法,2017,46(22):11272-11288.
[7]、Olha Bodnar,Wolfgang Schmid.CUSUM charts for monitoring the mean of a multivariate Gaussian process[J].Journal of statistical planning and inference,2011,141(6):2055-2070.
[8]、Trevor F. Cox.Multidimensional scaling used in multivariate statistical process control[J].Journal of applied statistics,2001,28(3):365-378.
[9]、Trevor F., Cox.Multidimensional scaling used in multivariate statistical process control[J].Journal of applied statistics,2001,28(3-4):365-378.
[10]、George C. Ranger,Frank B. Alt.Choosing principal components for multivariate statistical process control[J].统计学通讯:理论与方法,2013,42(5):909-922.
[11]、Michele?CostaEmail author,Stefano?Iezzi.Technology spillover and regional convergence process: a statistical analysis of the Italian case[J].Statistical Methods and Applications,2004,13(3):375-398.
[12]、P. J. Harrison.Statistical process control and model monitoring[J].Journal of applied statistics,1999,26(2):273-292.
[13]、C. D. Lai ,K. Govindaraju,M. Xie.Effects of correlation on fraction non-conforming statistical process control procedures[J].Journal of applied statistics,1998,25(4):535-543.
[14]、Zhonghua Li,Peihua Qiu,Snigdhansu Chatterjee,Zhaojun Wang.Using p values to design statistical process control charts[J].Statistical Papers,2013,54(2):523-539.
[15]、Dietmar Fink,Oded Löwenbein.A management consulting view on the statistical consulting process[J].AStA Advances in Statistical Analysis,2010,94(1):105-109.
[16]、Manabu, Kuroki.Optimizing a control plan using a structural equation model with an application to statistical process analysis[J].Journal of applied statistics,2012,39(3):673-694.
[17]、Demetrios, L., Antzoulakos,Athanasios, C., Rakitzis.Runs rules schemes for monitoring process variability[J].Journal of applied statistics,2010,37(7):1231-1247.
[18]、A new approach for monitoring process variance[J].Journal of Statistical Computation and Simulation
[19]、Takemi Yanagimoto.The inverse binomial distribution as a statistical model[J].统计学通讯:理论与方法,2013,42(10):3625-3633.
[20]、Muhammad Awais.An EWMA chart for monitoring process mean[J].Journal of Statistical Computation and Simulation,2018,88(5):1003-1025.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号