首页 | 本学科首页   官方微博 | 高级检索  
     


A finite mixture model for image segmentation
Authors:Marco Alfò  Luciano Nieddu  Donatella Vicari
Affiliation:(1) Dipartimento di Statistica, Probabilità e Statistiche Applicate, Sapienza Università di Roma, Rome, Italy;(2) Facoltà di Economia, Libera Università “S. Pio V” di Roma, Rome, Italy
Abstract:In this paper, we propose a model for image segmentation based on a finite mixture of Gaussian distributions. For each pixel of the image, prior probabilities of class memberships are specified through a Gibbs distribution, where association between labels of adjacent pixels is modeled by a class-specific term allowing for different interaction strengths across classes. We show how model parameters can be estimated in a maximum likelihood framework using Mean Field theory. Experimental performance on perturbed phantom and on real benchmark images shows that the proposed method performs well in a wide variety of empirical situations.
Keywords:Image segmentation  Finite mixtures  Gibbs distribution  Maximum-likelihood  Mean Field approximation
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号