首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A mixture model for random graphs
Authors:J-J Daudin  F Picard  S Robin
Institution:(1) Mathématiques et Informatique Appliquées, AgroParisTech and INRA UMR518, 16, rue Clause Bernard, 75005 Paris, France
Abstract:The Erdös–Rényi model of a network is simple and possesses many explicit expressions for average and asymptotic properties, but it does not fit well to real-world networks. The vertices of those networks are often structured in unknown classes (functionally related proteins or social communities) with different connectivity properties. The stochastic block structures model was proposed for this purpose in the context of social sciences, using a Bayesian approach. We consider the same model in a frequentest statistical framework. We give the degree distribution and the clustering coefficient associated with this model, a variational method to estimate its parameters and a model selection criterion to select the number of classes. This estimation procedure allows us to deal with large networks containing thousands of vertices. The method is used to uncover the modular structure of a network of enzymatic reactions.
Keywords:Random graphs  Mixture models  Variational method
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号