Real nonparametric regression using complex wavelets |
| |
Authors: | Stuart Barber Guy P. Nason |
| |
Affiliation: | University of Bristol, UK |
| |
Abstract: | Summary. Wavelet shrinkage is an effective nonparametric regression technique, especially when the underlying curve has irregular features such as spikes or discontinuities. The basic idea is simple: take the discrete wavelet transform of data consisting of a signal corrupted by noise; shrink or remove the wavelet coefficients to remove the noise; then invert the discrete wavelet transform to form an estimate of the true underlying curve. Various researchers have proposed increasingly sophisticated methods of doing this by using real-valued wavelets. Complex-valued wavelets exist but are rarely used. We propose two new complex-valued wavelet shrinkage techniques: one based on multiwavelet style shrinkage and the other using Bayesian methods. Extensive simulations show that our methods almost always give significantly more accurate estimates than methods based on real-valued wavelets. Further, our multiwavelet style shrinkage method is both simpler and dramatically faster than its competitors. To understand the excellent performance of this method we present a new risk bound on its hard thresholded coefficients. |
| |
Keywords: | Complex normal distribution Complex-valued wavelets Curve estimation Empirical Bayes method Multiwavelets Wavelet shrinkage |
|