首页 | 本学科首页   官方微博 | 高级检索  
     


Real nonparametric regression using complex wavelets
Authors:Stuart Barber   Guy P. Nason
Affiliation:University of Bristol, UK
Abstract:Summary.  Wavelet shrinkage is an effective nonparametric regression technique, especially when the underlying curve has irregular features such as spikes or discontinuities. The basic idea is simple: take the discrete wavelet transform of data consisting of a signal corrupted by noise; shrink or remove the wavelet coefficients to remove the noise; then invert the discrete wavelet transform to form an estimate of the true underlying curve. Various researchers have proposed increasingly sophisticated methods of doing this by using real-valued wavelets. Complex-valued wavelets exist but are rarely used. We propose two new complex-valued wavelet shrinkage techniques: one based on multiwavelet style shrinkage and the other using Bayesian methods. Extensive simulations show that our methods almost always give significantly more accurate estimates than methods based on real-valued wavelets. Further, our multiwavelet style shrinkage method is both simpler and dramatically faster than its competitors. To understand the excellent performance of this method we present a new risk bound on its hard thresholded coefficients.
Keywords:Complex normal distribution    Complex-valued wavelets    Curve estimation    Empirical Bayes method    Multiwavelets    Wavelet shrinkage
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号