首页 | 本学科首页   官方微博 | 高级检索  
     

基于两阶段算法的带时间窗车辆路径研究
引用本文:宿恺,赵洁,郭明顺. 基于两阶段算法的带时间窗车辆路径研究[J]. 沈阳工业大学学报(社会科学版), 2008, 13(3): 240-245. DOI: 10.7688/j.issn.1674-0823.2020.03.08
作者姓名:宿恺  赵洁  郭明顺
作者单位:沈阳工业大学 管理学院, 沈阳 110870
基金项目:辽宁省高等学校基本科研项目(WQGD2017024)
摘    要:车辆路径问题(VRP)是研究在规定区域内如何规划车辆行驶轨迹来提高运输效率的调度问题。实际生活中往往有顾客对服务时间有自己的要求,因此对于特定时间内车辆路径问题(VRPTW)的研究不但可以提高运输行业配送水平,而且可以有效提高顾客满意度及车辆利用率,实现资金合理配置。通过研究大量配送环节的VRPTW问题并结合实际配送需要,构建运输成本最小的带有惩罚函数的目标函数并设计两阶段算法,将聚类分析和改进遗传算法相结合。通过MATLAB仿真计算和对实验结果进行比较,验证所建模型及算法设计能够有效解决实际问题,降低配送成本。

关 键 词:车辆路径问题  软时间窗  配送效率  聚类分析  改进遗传算法  

Research on vehicle path with time window based on two-stage algorithm
SU Kai,ZHAO Jie,GUO Ming-shun. Research on vehicle path with time window based on two-stage algorithm[J]. Journal of Shenyang University of Technology(Social Science Edition), 2008, 13(3): 240-245. DOI: 10.7688/j.issn.1674-0823.2020.03.08
Authors:SU Kai  ZHAO Jie  GUO Ming-shun
Affiliation:School of Management, Shenyang University of Technology, Shenyang 110870, China
Abstract:Vehicle routing problem(VRP)is a scheduling problem that studies how to plan driving routes of vehicle in a prescribed area to improve transportation efficiency. In actual life, customers often have their own requirements of service. Hence, the research on vehicle routing problem with time window(VRPTW)can not only improve the delivery level of transportation industry, but also effectively improve the customer satisfaction degree and the utilization rate of vehicle, and realize reasonable allocation of funds. By studying VRPTW problem in a large number of distributing links and combined with actual distribution needs, an objective function is constructed with penalty function aimed at minimizing transport cost and a two-stage algorithm is designed, which combines clustering analysis and improved genetic algorithms. By MATLAB simulation calculation and comparison of experiment results, it is verified that the model and algorithm design can effectively solve practical problem and reduce distribution cost.
Keywords:vehicle routing problem  soft time window  distributing efficiency  cluster analysis  improved genetic algorithm  
点击此处可从《沈阳工业大学学报(社会科学版)》浏览原始摘要信息
点击此处可从《沈阳工业大学学报(社会科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号