首页
|
本学科首页
官方微博
|
高级检索
全部学科
医药、卫生
生物科学
工业技术
交通运输
航空、航天
环境科学、安全科学
自然科学总论
数理科学和化学
天文学、地球科学
农业科学
哲学、宗教
社会科学总论
政治、法律
军事
经济
历史、地理
语言、文字
文学
艺术
文化、科学、教育、体育
马列毛邓
全部专业
中文标题
英文标题
中文关键词
英文关键词
中文摘要
英文摘要
作者中文名
作者英文名
单位中文名
单位英文名
基金中文名
基金英文名
杂志中文名
杂志英文名
栏目中文名
栏目英文名
DOI
责任编辑
分类号
杂志ISSN号
Model‐based linear clustering
Authors:
Guohua Yan
William J. Welch
Ruben H. Zamar
Affiliation:
1. Department of Mathematics and Statistics, University of New Brunswick, Fredericton, NB, Canada E3B 5A3;2. Department of Statistics, University of British Columbia, Vancouver, BC, Canada V6T 1Z2
Abstract:
The authors propose a profile likelihood approach to linear clustering which explores potential linear clusters in a data set. For each linear cluster, an errors‐in‐variables model is assumed. The optimization of the derived profile likelihood can be achieved by an EM algorithm. Its asymptotic properties and its relationships with several existing clustering methods are discussed. Methods to determine the number of components in a data set are adapted to this linear clustering setting. Several simulated and real data sets are analyzed for comparison and illustration purposes.
The Canadian Journal of Statistics
38: 716–737; 2010 © 2010 Statistical Society of Canada
Keywords:
EM algorithm
errors‐in‐variables model
linear cluster
mixture model
orthogonal regression
profile likelihood
MSC 2000:
Primary 62H30
secondary 62J05
62F12
设为首页
|
免责声明
|
关于勤云
|
加入收藏
Copyright
©
北京勤云科技发展有限公司
京ICP备09084417号