Abstract: | A nonparametric test for detecting changing conditional variances in stationary AR(p) time series is proposed in this paper. For AR(1) models, the test statistic is a Kolmogorov-Smirnov type statistic and the asymptotic theory is developed under both the null and the alternative hypotheses. For AR(p) models (p ≥ 2), an approximate test procedure is proposed. The empirical upper percentage points for our test are tabulated for both p = 1 and p = 2 cases and a bootstrap procedure is suggested for the p ≥ 3 case. Monte Carlo simulations demonstrate that the test has very good powers for finite samples under both normal and non-normal errors. |