首页 | 本学科首页   官方微博 | 高级检索  
     


A NONPARAMETRIC TEST OF CHANGING CONDITIONAL VARIANCES IN AUTOREGRESSIVE TIME SERIES
Abstract:A nonparametric test for detecting changing conditional variances in stationary AR(p) time series is proposed in this paper. For AR(1) models, the test statistic is a Kolmogorov-Smirnov type statistic and the asymptotic theory is developed under both the null and the alternative hypotheses. For AR(p) models (p ≥ 2), an approximate test procedure is proposed. The empirical upper percentage points for our test are tabulated for both p = 1 and p = 2 cases and a bootstrap procedure is suggested for the p ≥ 3 case. Monte Carlo simulations demonstrate that the test has very good powers for finite samples under both normal and non-normal errors.
Keywords:Marked empirical process  Nonparametric test  Chan-ging conditional variance  Autoregressive model
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号