首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Fitting with Matrix-Exponential Distributions
Abstract:Abstract

It is well known that general phase-type distributions are considerably overparameterized, that is, their representations often require many more parameters than is necessary to define the distributions. In addition, phase-type distributions, even those defined by a small number of parameters, may have representations of high order. These two problems have serious implications when using phase-type distributions to fit data. To address this issue we consider fitting data with the wider class of matrix-exponential distributions. Representations for matrix-exponential distributions do not need to have a simple probabilistic interpretation, and it is this relaxation which ensures that the problems of overparameterization and high order do not present themselves. However, when using matrix-exponential distributions to fit data, a problem arises because it is unknown, in general, when their representations actually correspond to a distribution. In this paper we develop a characterization for matrix-exponential distributions and use it in a method to fit data using maximum likelihood estimation. The fitting algorithm uses convex semi-infinite programming combined with a nonlinear search.
Keywords:Matrix-exponential distribution  Maximum likelihood estimation  Phase-type distribution  Rational Laplace-Stieltjes transform  Semi-infinite programming
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号