Abstract: | The paper derives Bartlett corrections for improving the chisquare approximation to the likelihood ratio statistics in a class of location-scale family of distributions, which encompasses the elliptical family of distributions and also asymmetric distributions such as the extreme value distributions. We present, in matrix notation, a Bartlett corrected likelihood ratio statistic for testing that a subset of the nonlinear regression coefficients in this class of models equals a given vector of constants. The formulae derived are simple enough to be used analytically to obtain several Bartlett corrections in a variety of important models. We show that these formulae generalize a number of previously published results. We also present simulation results comparing the sizes and powers of the usual likelihood ratio tests and their Bartlett corrected versions when the scale parameter is considered known and when this parameter is uncorrectly specified. |