Abstract: | ABSTRACT We consider Pitman-closeness to evaluate the performance of univariate and multivariate forecasting methods. Optimal weights for the combination of forecasts are calculated with respect to this criterion. These weights depend on the assumption of the distribution of the individual forecasts errors. In the normal case they are identical with the optimal weights with respect to the MSE-criterion (univariate case) and with the optimal weights with respect to the MMSE-criterion (multivariate case). Further, we present a simple example to show how the different combination techniques perform. There we can see how much the optimal multivariate combination can outperform different other combinations. In practice, we can find multivariate forecasts e.g., in econometrics. There is often the situation that forecast institutes estimate several economic variables. |