Abstract: | ABSTRACT In this paper, we propose a new probability model called the log-EIG distribution for lifetime data analysis. Some important properties of the proposed model and maximum likelihood estimation of its parameters are discussed. Its relationship with the exponential inverse Gaussian distribution is similar to that of the lognormal and the normal distributions. Through applications to well-known datasets, we show that the log-EIG distribution competes well, and in some instances even provides a better fit than the commonly used lifetime models such as the gamma, lognormal, Weibull and inverse Gaussian distributions. It can accommodate situations where an increasing failure rate model is required as well as those with a decreasing failure rate at larger times. |