首页 | 本学科首页   官方微博 | 高级检索  
     


A Bayesian Approach for Nonlinear Regression Models with Continuous Errors
Abstract:Abstract

In this paper we develop a Bayesian analysis for the nonlinear regression model with errors that follow a continuous autoregressive process. In this way, unequally spaced observations do not present a problem in the analysis. We employ the Gibbs sampler, (see Gelfand, A., Smith, A. (1990 Gelfand, A. and Smith, A. 1990. Sampling based approaches to calculating marginal densities. J. Amer. Statist. Assoc., 85: 398409. [Taylor & Francis Online], [Web of Science ®] [Google Scholar]). Sampling based approaches to calculating marginal densities. J. Amer. Statist. Assoc. 85:398–409.), as the foundation for making Bayesian inferences. We illustrate these Bayesian inferences with an analysis of a real data-set. Using these same data, we contrast the Bayesian approach with a generalized least squares technique.
Keywords:Continuous autoregressive process  Gibbs sampler  Metropolis-Hastings algorithm within Gibbs sampler  Nonlinear models
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号