首页
|
本学科首页
官方微博
|
高级检索
全部学科
医药、卫生
生物科学
工业技术
交通运输
航空、航天
环境科学、安全科学
自然科学总论
数理科学和化学
天文学、地球科学
农业科学
哲学、宗教
社会科学总论
政治、法律
军事
经济
历史、地理
语言、文字
文学
艺术
文化、科学、教育、体育
马列毛邓
全部专业
中文标题
英文标题
中文关键词
英文关键词
中文摘要
英文摘要
作者中文名
作者英文名
单位中文名
单位英文名
基金中文名
基金英文名
杂志中文名
杂志英文名
栏目中文名
栏目英文名
DOI
责任编辑
分类号
杂志ISSN号
微分几何中一个定理的证明
作者姓名:
于纯孝
作者单位:
山东师范大学数学系
摘 要:
文献〔1〕中有如下定理: 设C:r(s)={x(s),y(s)}是至少为C~2类的平面闭曲线,其中s∈〔0,L〕为弧长参数,令θ(s)表示x轴到C的单位切向量α(s)={x(s),y(s)}的按逆时针方向计算的有向角并且0≤θ(s)<2π,则可定义一个连续可微函数 θ=θ(s),s∈〔0,L〕,使得θ(S)和θ(s)只相差2π的整数倍,即
本文献已被
CNKI
等数据库收录!
设为首页
|
免责声明
|
关于勤云
|
加入收藏
Copyright
©
北京勤云科技发展有限公司
京ICP备09084417号