首页 | 本学科首页   官方微博 | 高级检索  
     


An asymptotic approach to progressive censoring
Authors:Glenn Hofmann   Erhard Cramer   N. Balakrishnan  Gerd Kunert  
Affiliation:

aDepartamento de Estadistica, Facultad de Ciencias Físicas y Matemáticas, Barrio Universitario, Casilla 160-C, Concepción, Chile

bDepartment of Mathematics, University of Oldenburg, 26111 Oldenburg, Germany

cDepartment of Mathematics and Statistics, McMaster University, 1280 Main Street West, Hamilton, Ont., Canada L8S 4K1

dDepartment of Mathematics, TU Chemnitz, 09107 Chemnitz, Germany

Abstract:Progressive Type-II censoring was introduced by Cohen (Technometrics 5(1963) 327) and has been the topic of much research. The question stands whether it is sensible to use this sampling plan by design, instead of regular Type-II right censoring. We introduce an asymptotic progressive censoring model, and find optimal censoring schemes for location-scale families. Our optimality criterion is the determinant of the 2×2 covariance matrix of the asymptotic best linear unbiased estimators. We present an explicit expression for this criterion, and conditions for its boundedness. By means of numerical optimization, we determine optimal censoring schemes for the extreme value, the Weibull and the normal distributions. In many situations, it is shown that these progressive schemes significantly improve upon regular Type-II right censoring.
Keywords:Order statistics   Progressive censoring   Best linear estimation   Generalized variance   Optimal censoring scheme   Extreme value distribution   Weibull distribution   Normal distribution
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号