首页 | 本学科首页   官方微博 | 高级检索  
     


A High‐dimensional Focused Information Criterion
Abstract:The focused information criterion for model selection is constructed to select the model that best estimates a particular quantity of interest, the focus, in terms of mean squared error. We extend this focused selection process to the high‐dimensional regression setting with potentially a larger number of parameters than the size of the sample. We distinguish two cases: (i) the case where the considered submodel is of low dimension and (ii) the case where it is of high dimension. In the former case, we obtain an alternative expression of the low‐dimensional focused information criterion that can directly be applied. In the latter case, we use a desparsified estimator that allows us to derive the mean squared error of the focus estimator. We illustrate the performance of the high‐dimensional focused information criterion with a numerical study and a real dataset.
Keywords:desparsified estimator  focused information criterion  high‐dimensional data  variable selection
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号