首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Convergence Analysis of MCMC Algorithms for Bayesian Multivariate Linear Regression with Non‐Gaussian Errors
Abstract:When Gaussian errors are inappropriate in a multivariate linear regression setting, it is often assumed that the errors are iid from a distribution that is a scale mixture of multivariate normals. Combining this robust regression model with a default prior on the unknown parameters results in a highly intractable posterior density. Fortunately, there is a simple data augmentation (DA) algorithm and a corresponding Haar PX‐DA algorithm that can be used to explore this posterior. This paper provides conditions (on the mixing density) for geometric ergodicity of the Markov chains underlying these Markov chain Monte Carlo algorithms. Letting d denote the dimension of the response, the main result shows that the DA and Haar PX‐DA Markov chains are geometrically ergodic whenever the mixing density is generalized inverse Gaussian, log‐normal, inverted Gamma (with shape parameter larger than d /2) or Fréchet (with shape parameter larger than d /2). The results also apply to certain subsets of the Gamma, F and Weibull families.
Keywords:data augmentation algorithm  drift condition  geometric ergodicity  Haar PX‐DA algorithm  heavy‐tailed distribution  minorization condition  scale mixture
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号