首页 | 本学科首页   官方微博 | 高级检索  
     


Fuzzy K-means clustering models for triangular fuzzy time trajectories
Authors:Renato Coppi  Pierpaolo D'Urso
Affiliation:(1) Dipartimento di Statistica, Probabilità e Statistiche Applicate, Università degli Studi di Roma “La Sapienza”, Piazzale Aldo Moro 5, 00185 Roma, Italy
Abstract:We focus our attention on the classification of fuzzy time trajectories with triangular membership function, described by a given set of individuals. To this purpose, we adopt a fullyinformational approach, explicitly recognizing the informational nature shared by the ingredients of the classification procedure: the observed data (Empirical Information) and the classification model (Theoretical Information). In particular, by supposing that the informational paradigm has a fuzzy nature, we suggest three fuzzy clustering models allowing the classification of the triangular fuzzy time trajectories, based on the analysis of the cross sectional and/or longitudinal characteristics of their components (centers and spreads). Two applicative examples are illustrated.
Keywords:Informational support  Fuzzy time array  Fuzzy time trajectory  Triangular membership function  Cross sectional and/or longitudinal double fuzzy clustering
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号