首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Bayes and maximum likelihood for $$L^1$$-Wasserstein deconvolution of Laplace mixtures
Authors:Catia Scricciolo
Institution:1.Università degli Studi di Verona,Verona,Italy
Abstract:We consider the problem of recovering a distribution function on the real line from observations additively contaminated with errors following the standard Laplace distribution. Assuming that the latent distribution is completely unknown leads to a nonparametric deconvolution problem. We begin by studying the rates of convergence relative to the \(L^2\)-norm and the Hellinger metric for the direct problem of estimating the sampling density, which is a mixture of Laplace densities with a possibly unbounded set of locations: the rate of convergence for the Bayes’ density estimator corresponding to a Dirichlet process prior over the space of all mixing distributions on the real line matches, up to a logarithmic factor, with the \(n^{-3/8}\log ^{1/8}n\) rate for the maximum likelihood estimator. Then, appealing to an inversion inequality translating the \(L^2\)-norm and the Hellinger distance between general kernel mixtures, with a kernel density having polynomially decaying Fourier transform, into any \(L^p\)-Wasserstein distance, \(p\ge 1\), between the corresponding mixing distributions, provided their Laplace transforms are finite in some neighborhood of zero, we derive the rates of convergence in the \(L^1\)-Wasserstein metric for the Bayes’ and maximum likelihood estimators of the mixing distribution. Merging in the \(L^1\)-Wasserstein distance between Bayes and maximum likelihood follows as a by-product, along with an assessment on the stochastic order of the discrepancy between the two estimation procedures.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号