首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 525 毫秒
1.
Abstract

In this article, we consider a panel data partially linear regression model with fixed effect and non parametric time trend function. The data can be dependent cross individuals through linear regressor and error components. Unlike the methods using non parametric smoothing technique, a difference-based method is proposed to estimate linear regression coefficients of the model to avoid bandwidth selection. Here the difference technique is employed to eliminate the non parametric function effect, not the fixed effects, on linear regressor coefficient estimation totally. Therefore, a more efficient estimator for parametric part is anticipated, which is shown to be true by the simulation results. For the non parametric component, the polynomial spline technique is implemented. The asymptotic properties of estimators for parametric and non parametric parts are presented. We also show how to select informative ones from a number of covariates in the linear part by using smoothly clipped absolute deviation-penalized estimators on a difference-based least-squares objective function, and the resulting estimators perform asymptotically as well as the oracle procedure in terms of selecting the correct model.  相似文献   

2.
There exists a recent study where dynamic mixed‐effects regression models for count data have been extended to a semi‐parametric context. However, when one deals with other discrete data such as binary responses, the results based on count data models are not directly applicable. In this paper, we therefore begin with existing binary dynamic mixed models and generalise them to the semi‐parametric context. For inference, we use a new semi‐parametric conditional quasi‐likelihood (SCQL) approach for the estimation of the non‐parametric function involved in the semi‐parametric model, and a semi‐parametric generalised quasi‐likelihood (SGQL) approach for the estimation of the main regression, dynamic dependence and random effects variance parameters. A semi‐parametric maximum likelihood (SML) approach is also used as a comparison to the SGQL approach. The properties of the estimators are examined both asymptotically and empirically. More specifically, the consistency of the estimators is established and finite sample performances of the estimators are examined through an intensive simulation study.  相似文献   

3.
We study the focused information criterion and frequentist model averaging and their application to post‐model‐selection inference for weighted composite quantile regression (WCQR) in the context of the additive partial linear models. With the non‐parametric functions approximated by polynomial splines, we show that, under certain conditions, the asymptotic distribution of the frequentist model averaging WCQR‐estimator of a focused parameter is a non‐linear mixture of normal distributions. This asymptotic distribution is used to construct confidence intervals that achieve the nominal coverage probability. With properly chosen weights, the focused information criterion based WCQR estimators are not only robust to outliers and non‐normal residuals but also can achieve efficiency close to the maximum likelihood estimator, without assuming the true error distribution. Simulation studies and a real data analysis are used to illustrate the effectiveness of the proposed procedure.  相似文献   

4.
This paper deals with a longitudinal semi‐parametric regression model in a generalised linear model setup for repeated count data collected from a large number of independent individuals. To accommodate the longitudinal correlations, we consider a dynamic model for repeated counts which has decaying auto‐correlations as the time lag increases between the repeated responses. The semi‐parametric regression function involved in the model contains a specified regression function in some suitable time‐dependent covariates and a non‐parametric function in some other time‐dependent covariates. As far as the inference is concerned, because the non‐parametric function is of secondary interest, we estimate this function consistently using the independence assumption‐based well‐known quasi‐likelihood approach. Next, the proposed longitudinal correlation structure and the estimate of the non‐parametric function are used to develop a semi‐parametric generalised quasi‐likelihood approach for consistent and efficient estimation of the regression effects in the parametric regression function. The finite sample performance of the proposed estimation approach is examined through an intensive simulation study based on both large and small samples. Both balanced and unbalanced cluster sizes are incorporated in the simulation study. The asymptotic performances of the estimators are given. The estimation methodology is illustrated by reanalysing the well‐known health care utilisation data consisting of counts of yearly visits to a physician by 180 individuals for four years and several important primary and secondary covariates.  相似文献   

5.
We propose localized spectral estimators for the quadratic covariation and the spot covolatility of diffusion processes, which are observed discretely with additive observation noise. The appropriate estimation for time‐varying volatilities is based on an asymptotic equivalence of the underlying statistical model to a white‐noise model with correlation and volatility processes being constant over small time intervals. The asymptotic equivalence of the continuous‐time and discrete‐time experiments is proved by a construction with linear interpolation in one direction and local means for the other. The new estimator outperforms earlier non‐parametric methods in the literature for the considered model. We investigate its finite sample size characteristics in simulations and draw a comparison between various proposed methods.  相似文献   

6.
Abstract. We investigate non‐parametric estimation of a monotone baseline hazard and a decreasing baseline density within the Cox model. Two estimators of a non‐decreasing baseline hazard function are proposed. We derive the non‐parametric maximum likelihood estimator and consider a Grenander type estimator, defined as the left‐hand slope of the greatest convex minorant of the Breslow estimator. We demonstrate that the two estimators are strongly consistent and asymptotically equivalent and derive their common limit distribution at a fixed point. Both estimators of a non‐increasing baseline hazard and their asymptotic properties are obtained in a similar manner. Furthermore, we introduce a Grenander type estimator for a non‐increasing baseline density, defined as the left‐hand slope of the least concave majorant of an estimator of the baseline cumulative distribution function, derived from the Breslow estimator. We show that this estimator is strongly consistent and derive its asymptotic distribution at a fixed point.  相似文献   

7.
Abstract. Motivated by applications of Poisson processes for modelling periodic time‐varying phenomena, we study a semi‐parametric estimator of the period of cyclic intensity function of a non‐homogeneous Poisson process. There are no parametric assumptions on the intensity function which is treated as an infinite dimensional nuisance parameter. We propose a new family of estimators for the period of the intensity function, address the identifiability and consistency issues and present simulations which demonstrate good performance of the proposed estimation procedure in practice. We compare our method to competing methods on synthetic data and apply it to a real data set from a call center.  相似文献   

8.
In this paper, we consider non‐parametric copula inference under bivariate censoring. Based on an estimator of the joint cumulative distribution function, we define a discrete and two smooth estimators of the copula. The construction that we propose is valid for a large range of estimators of the distribution function and therefore for a large range of bivariate censoring frameworks. Under some conditions on the tails of the distributions, the weak convergence of the corresponding copula processes is obtained in l([0,1]2). We derive the uniform convergence rates of the copula density estimators deduced from our smooth copula estimators. Investigation of the practical behaviour of these estimators is performed through a simulation study and two real data applications, corresponding to different censoring settings. We use our non‐parametric estimators to define a goodness‐of‐fit procedure for parametric copula models. A new bootstrap scheme is proposed to compute the critical values.  相似文献   

9.
The mode of a distribution provides an important summary of data and is often estimated on the basis of some non‐parametric kernel density estimator. This article develops a new data analysis tool called modal linear regression in order to explore high‐dimensional data. Modal linear regression models the conditional mode of a response Y given a set of predictors x as a linear function of x . Modal linear regression differs from standard linear regression in that standard linear regression models the conditional mean (as opposed to mode) of Y as a linear function of x . We propose an expectation–maximization algorithm in order to estimate the regression coefficients of modal linear regression. We also provide asymptotic properties for the proposed estimator without the symmetric assumption of the error density. Our empirical studies with simulated data and real data demonstrate that the proposed modal regression gives shorter predictive intervals than mean linear regression, median linear regression and MM‐estimators.  相似文献   

10.
This article considers a partially linear panel data model with fixed individual and time effects in a setting where both N and T are large. Based on the within transformation and profile likelihood method, we propose an approach to estimating the parametric and non parametric components of the partially linear model. The resultant estimators are shown to be consistent and asymptotically normal. Monte Carlo simulations are also conducted to illustrate the finite-sample performance of the proposed estimators.  相似文献   

11.
Central limit theorems play an important role in the study of statistical inference for stochastic processes. However, when the non‐parametric local polynomial threshold estimator, especially local linear case, is employed to estimate the diffusion coefficients of diffusion processes, the adaptive and predictable structure of the estimator conditionally on the σ ‐field generated by diffusion processes is destroyed, so the classical central limit theorem for martingale difference sequences cannot work. In high‐frequency data, we proved the central limit theorems of local polynomial threshold estimators for the volatility function in diffusion processes with jumps by Jacod's stable convergence theorem. We believe that our proof procedure for local polynomial threshold estimators provides a new method in this field, especially in the local linear case.  相似文献   

12.
In this article, we propose a general class of partially linear transformation models for recurrent gap time data, which extends the linear transformation models by incorporating non linear covariate effects and includes the partially linear proportional hazards and the partially linear proportional odds models as special cases. Both global and local estimating equations are developed to estimate the parametric and non parametric covariate effects, and the asymptotic properties of the resulting estimators are established. The finite-sample behavior of the proposed estimators is evaluated through simulation studies, and an application to a clinic study on chronic granulomatous disease is provided.  相似文献   

13.
The linear regression model for right censored data, also known as the accelerated failure time model using the logarithm of survival time as the response variable, is a useful alternative to the Cox proportional hazards model. Empirical likelihood as a non‐parametric approach has been demonstrated to have many desirable merits thanks to its robustness against model misspecification. However, the linear regression model with right censored data cannot directly benefit from the empirical likelihood for inferences mainly because of dependent elements in estimating equations of the conventional approach. In this paper, we propose an empirical likelihood approach with a new estimating equation for linear regression with right censored data. A nested coordinate algorithm with majorization is used for solving the optimization problems with non‐differentiable objective function. We show that the Wilks' theorem holds for the new empirical likelihood. We also consider the variable selection problem with empirical likelihood when the number of predictors can be large. Because the new estimating equation is non‐differentiable, a quadratic approximation is applied to study the asymptotic properties of penalized empirical likelihood. We prove the oracle properties and evaluate the properties with simulated data. We apply our method to a Surveillance, Epidemiology, and End Results small intestine cancer dataset.  相似文献   

14.
Abstract. To increase the predictive abilities of several plasma biomarkers on the coronary artery disease (CAD)‐related vital statuses over time, our research interest mainly focuses on seeking combinations of these biomarkers with the highest time‐dependent receiver operating characteristic curves. An extended generalized linear model (EGLM) with time‐varying coefficients and an unknown bivariate link function is used to characterize the conditional distribution of time to CAD‐related death. Based on censored survival data, two non‐parametric procedures are proposed to estimate the optimal composite markers, linear predictors in the EGLM model. Estimation methods for the classification accuracies of the optimal composite markers are also proposed. In the article we establish theoretical results of the estimators and examine the corresponding finite‐sample properties through a series of simulations with different sample sizes, censoring rates and censoring mechanisms. Our optimization procedures and estimators are further shown to be useful through an application to a prospective cohort study of patients undergoing angiography.  相似文献   

15.
In this paper, we consider the estimation of both the parameters and the nonparametric link function in partially linear single‐index models for longitudinal data that may be unbalanced. In particular, a new three‐stage approach is proposed to estimate the nonparametric link function using marginal kernel regression and the parametric components with generalized estimating equations. The resulting estimators properly account for the within‐subject correlation. We show that the parameter estimators are asymptotically semiparametrically efficient. We also show that the asymptotic variance of the link function estimator is minimized when the working error covariance matrices are correctly specified. The new estimators are more efficient than estimators in the existing literature. These asymptotic results are obtained without assuming normality. The finite‐sample performance of the proposed method is demonstrated by simulation studies. In addition, two real‐data examples are analyzed to illustrate the methodology.  相似文献   

16.
In the analysis of semi‐competing risks data interest lies in estimation and inference with respect to a so‐called non‐terminal event, the observation of which is subject to a terminal event. Multi‐state models are commonly used to analyse such data, with covariate effects on the transition/intensity functions typically specified via the Cox model and dependence between the non‐terminal and terminal events specified, in part, by a unit‐specific shared frailty term. To ensure identifiability, the frailties are typically assumed to arise from a parametric distribution, specifically a Gamma distribution with mean 1.0 and variance, say, σ2. When the frailty distribution is misspecified, however, the resulting estimator is not guaranteed to be consistent, with the extent of asymptotic bias depending on the discrepancy between the assumed and true frailty distributions. In this paper, we propose a novel class of transformation models for semi‐competing risks analysis that permit the non‐parametric specification of the frailty distribution. To ensure identifiability, the class restricts to parametric specifications of the transformation and the error distribution; the latter are flexible, however, and cover a broad range of possible specifications. We also derive the semi‐parametric efficient score under the complete data setting and propose a non‐parametric score imputation method to handle right censoring; consistency and asymptotic normality of the resulting estimators is derived and small‐sample operating characteristics evaluated via simulation. Although the proposed semi‐parametric transformation model and non‐parametric score imputation method are motivated by the analysis of semi‐competing risks data, they are broadly applicable to any analysis of multivariate time‐to‐event outcomes in which a unit‐specific shared frailty is used to account for correlation. Finally, the proposed model and estimation procedures are applied to a study of hospital readmission among patients diagnosed with pancreatic cancer.  相似文献   

17.
In this paper, we consider a new mixture of varying coefficient models, in which each mixture component follows a varying coefficient model and the mixing proportions and dispersion parameters are also allowed to be unknown smooth functions. We systematically study the identifiability, estimation and inference for the new mixture model. The proposed new mixture model is rather general, encompassing many mixture models as its special cases such as mixtures of linear regression models, mixtures of generalized linear models, mixtures of partially linear models and mixtures of generalized additive models, some of which are new mixture models by themselves and have not been investigated before. The new mixture of varying coefficient model is shown to be identifiable under mild conditions. We develop a local likelihood procedure and a modified expectation–maximization algorithm for the estimation of the unknown non‐parametric functions. Asymptotic normality is established for the proposed estimator. A generalized likelihood ratio test is further developed for testing whether some of the unknown functions are constants. We derive the asymptotic distribution of the proposed generalized likelihood ratio test statistics and prove that the Wilks phenomenon holds. The proposed methodology is illustrated by Monte Carlo simulations and an analysis of a CO2‐GDP data set.  相似文献   

18.
Abstract. The partially linear in‐slide model (PLIM) is a useful tool to make econometric analyses and to normalize microarray data. In this article, by using series approximations and a least squares procedure, we propose a semiparametric least squares estimator (SLSE) for the parametric component and a series estimator for the non‐parametric component. Under weaker conditions than those imposed in the literature, we show that the SLSE is asymptotically normal and that the series estimator attains the optimal convergence rate of non‐parametric regression. We also investigate the estimating problem of the error variance. In addition, we propose a wild block bootstrap‐based test for the form of the non‐parametric component. Some simulation studies are conducted to illustrate the finite sample performance of the proposed procedure. An example of application on a set of economical data is also illustrated.  相似文献   

19.
Abstract. We propose a non‐linear density estimator, which is locally adaptive, like wavelet estimators, and positive everywhere, without a log‐ or root‐transform. This estimator is based on maximizing a non‐parametric log‐likelihood function regularized by a total variation penalty. The smoothness is driven by a single penalty parameter, and to avoid cross‐validation, we derive an information criterion based on the idea of universal penalty. The penalized log‐likelihood maximization is reformulated as an ?1‐penalized strictly convex programme whose unique solution is the density estimate. A Newton‐type method cannot be applied to calculate the estimate because the ?1‐penalty is non‐differentiable. Instead, we use a dual block coordinate relaxation method that exploits the problem structure. By comparing with kernel, spline and taut string estimators on a Monte Carlo simulation, and by investigating the sensitivity to ties on two real data sets, we observe that the new estimator achieves good L 1 and L 2 risk for densities with sharp features, and behaves well with ties.  相似文献   

20.
Wavelet analysis has been proved to be a powerful statistical technique in the non parametric regression. In this paper, we propose non linear wavelet-based estimators for multivariable mean regression function with long-memory data. We also provide an asymptotic expansion for the mean integrated squared error (MISE) of the function estimators. This MISE expansion still works even when the underlying mean regression function is only piecewise smooth. This paper extends the corresponding results in the literature for single variable to multivariable case.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号