首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In an earlier paper the authors (1997) extended the results of Hayter (1990) to the two parameter exponential probability model. This paper addressee the extention to the scale parameter case under location-scale probability model. Consider k (k≧3) treatments or competing firms such that an observation from with treatment or firm follows a distribution with cumulative distribution function (cdf) Fi(x)=F[(x-μi)/Qi], where F(·) is any absolutely continuous cdf, i=1,…,k. We propose a test to test the null hypothesis H01=…=θk against the simple ordered alternative H11≦…≦θk, with at least one strict inequality, using the data Xi,j, i=1,…k; j=1,…,n1. Two methods to compute the critical points of the proposed test have been demonstrated by talking k two parameter exponential distributions. The test procedure also allows us to construct simultaneous one sided confidence intervals (SOCIs) for the ordered pairwise ratios θji, 1≦i<j≦k. Statistical simulation revealed that: 9i) actual sizes of the critical points are almost conservative and (ii) power of the proposed test relative to some existing tests is higher.  相似文献   

2.
We will consider the following problem.Maximise Φ(p)over P={p=(p1,P2,…,pj):Pj≧0,∑pj=1}". We require to calcute an optimizing distribution. Examples arise in optimal regression design,maximum likelihood estimation and stratified sazmpling problems. A class of multiplicative algorithms, indexed by functions which depend on the derivatives of Φ(·)is considered for solving this problem.Iterations are of the form:pj (r+1)αpj (r)f(xj (r)), where xj (r)=dj (r) or Fj (r)and dj (r)=?Φ/?pj While Fj (r)=Dj (r)?∑pi (r)di (r) (a directional derivative)at p=p(r)f(·)satisfies some suitable properties and may depend on one or more free parameters. These iterations neatly submit to the constraints ofv the problem. Some results will be reported and extensions to problems dependin on two or more distributions and to problems with additional constraints will be considered.  相似文献   

3.
In this paper an exact distributional framework is developed for analysing an IxJxK contingency table. It is shown that for the case of hypotheses H0:Pijk=Pi..P.j./K and H0:Pijk =Pi..P.j.P..k the exact distributional results do not follow as simple extensions of the corresponding results obtained for an I×J table under the hypothesis of independence. From the factorial moment generating functions, expressions for the covariance matrices in terms of the Kronecker products of matrices, are presented. These expressions give indications whether or not Pearson's chi-square statistic should be corrected by the factor (n?1)/n or not. Marginal and conditional distributions are considered briefly and important differences with regard to the resuits for marginal and conditional distributions for an IxJ table are mentioned.  相似文献   

4.
Consider a linear regression model with regression parameter β=(β1,…,βp) and independent normal errors. Suppose the parameter of interest is θ=aTβ, where a is specified. Define the s-dimensional parameter vector τ=CTβt, where C and t are specified. Suppose that we carry out a preliminary F test of the null hypothesis H0:τ=0 against the alternative hypothesis H1:τ≠0. It is common statistical practice to then construct a confidence interval for θ with nominal coverage 1−α, using the same data, based on the assumption that the selected model had been given to us a priori (as the true model). We call this the naive 1−α confidence interval for θ. This assumption is false and it may lead to this confidence interval having minimum coverage probability far below 1−α, making it completely inadequate. We provide a new elegant method for computing the minimum coverage probability of this naive confidence interval, that works well irrespective of how large s is. A very important practical application of this method is to the analysis of covariance. In this context, τ can be defined so that H0 expresses the hypothesis of “parallelism”. Applied statisticians commonly recommend carrying out a preliminary F test of this hypothesis. We illustrate the application of our method with a real-life analysis of covariance data set and a preliminary F test for “parallelism”. We show that the naive 0.95 confidence interval has minimum coverage probability 0.0846, showing that it is completely inadequate.  相似文献   

5.
Let X = (Xj : j = 1,…, n) be n row vectors of dimension p independently and identically distributed multinomial. For each j, Xj is partitioned as Xj = (Xj1, Xj2, Xj3), where pi is the dimension of Xji with p1 = 1,p1+p2+p3 = p. In addition, consider vectors Yji, i = 1,2j = 1,…,ni that are independent and distributed as X1i. We treat here the problem of testing independence between X11 and X13 knowing that X11 and X12 are uncorrected. A locally best invariant test is proposed for this problem.  相似文献   

6.

We consider the regression model yi = ?(xi ) + ε in which the function ? or its pth derivative ?(p) may have a discontinuity at some unknown point τ. By fitting local polynomials from the left and right, we test the null that ?(p) is continuous against the alternative that ?(p)(τ?) ≠ ?(p)(τ+). We obtain Darling-Erdös type limit theorems for the test statistics under the null hypothesis of no change, as well as their limits in probability under the alternative. Consistency of the related change-point estimators is also established.  相似文献   

7.
Let X1,X2, … be iid random variables with the pdf f(x,θ)=exp(θx?b(θ)) relative to a σ-finite measure μ, and consider the problem of deciding among three simple hypotheses Hi:θ=θi (1?i?3) subject to P(acceptHi|θi)=1?α (1?i?3). A procedure similar to Sobel–Wald procedure is discussed and its asymptotic efficiency as compared with the best nonsequential test is obtained by finding the limit lima→0(EiN(a)/n(a)), where N (a) is the stopping time of the proposed procedure and n(a) is the sample size of the best non-sequential test. It is shown that the same asymptotic limit holds for the original Sobel–Wald procedure. Specializing to N(θ,1) distribution it is found that lima→0(EiN(α)/n(α))=14 (i=1,2) and lima→0 (E3N(α)n(α))=δ21/4δ, where δi=(θi+1?θi) with 0<δ1?δ2. Also, the asymptotic efficiency evaluated when the X's have an exponential distribution.  相似文献   

8.
Let GF(s) be the finite field with s elements.(Thus, when s=3, the elements of GF(s) are 0, 1 and 2.)Let A(r×n), of rank r, and ci(i=1,…,f), (r×1), be matrices over GF(s). (Thus, for n=4, r=2, f=2, we could have A=[11100121], c1=[10], c2=[02].) Let Ti (i=1,…,f) be the flat in EG(n, s) consisting of the set of all the sn?r solutions of the equations At=ci, wheret′=(t1,…,tn) is a vector of variables.(Thus, EG(4, 3) consists of the 34=81 points of the form (t1,t2,t3,t4), where t's take the values 0,1,2 (in GF(3)). The number of solutions of the equations At=ci is sn?r, where r=Rank(A), and the set of such solutions is said to form an (n?r)-flat, i.e. a flat of (n?r) dimensions. In our example, both T1 and T2 are 2-flats consisting of 34?2=9 points each. The flats T1,T2,…,Tf are said to be parallel since, clearly, no two of them can have a common point. In the example, the points of T1 are (1000), (0011), (2022), (0102), (2110), (1121), (2201), (1212) and (0220). Also, T2 consists of (0002), (2010), (1021), (2101), (1112), (0120), (1200), (0211) and (2222).) Let T be the fractional design for a sn symmetric factorial experiment obtained by taking T1,T2,…,Tf together. (Thus, in the example, 34=81 treatments of the 34 factorial experiment correspond one-one with the points of EG(4,3), and T will be the design (i.e. a subset of the 81 treatments) consisting of the 18 points of T1 and T2 enumerated above.)In this paper, we lay the foundation of the general theory of such ‘parallel’ types of designs. We define certain functions of A called the alias component matrices, and use these to partition the coefficient matrix X (n×v), occuring in the corresponding linear model, into components X.j(j=0,1,…,g), such that the information matrix X is the direct sum of the X′.jX.j. Here, v is the total number of parameters, which consist of (possibly μ), and a (general) set of (geometric) factorial effects (each carrying (s?1) degrees of freedom as usual). For j≠0, we show that the spectrum of X′.jX.j does not change if we change (in a certain important way) the usual definition of the effects. Assuming that such change has been adopted, we consider the partition of the X.j into the Xij (i=1,…,f). Furthermore, the Xij are in turn partitioned into smaller matrices (which we shall here call the) Xijh. We show that each Xijh can be factored into a product of 3 matrices J, ζ (not depending on i,j, and h) and Q(j,h,i)where both the Kronecker and ordinary product are used. We introduce a ring R using the additive groups of the rational field and GF(s), and show that the Q(j,h,i) belong to a ring isomorphic to R. When s is a prime number, we show that R is the cyclotomic field. Finally, we show that the study of the X.j and X′.jX.j can be done in a much simpler manner, in terms of certain relatively small sized matrices over R.  相似文献   

9.
For a fixed point θ0 and a positive value c0, this paper studies the problem of testing the hypotheses H0:|θθ0|≤c0 against H1:|θθ0|>c0 for the normal mean parameter θ using the empirical Bayes approach. With the accumulated past data, a monotone empirical Bayes test is constructed by mimicking the behavior of a monotone Bayes test. Such an empirical Bayes test is shown to be asymptotically optimal and its regret converges to zero at a rate (lnn)2.5/n where n is the number of past data available, when the current testing problem is considered. A simulation study is also given, and the results show that the proposed empirical Bayes procedure has good performance for small to moderately large sample sizes. Our proposed method can be applied for testing close to a control problem or testing the therapeutic equivalence of one standard treatment compared to another in clinical trials.  相似文献   

10.
Consider a sequence x ≡ (x1,…, xn) of n independent observations, in which each observation xi is known to be a realization from either one of ki given populations, chosen among k (≥ ki) populations π1, …, πk Our main objective is to study the problem of the selection of the most reliable population πj at a fixed time ξ, when no assumptions about the k populations are made. Some numerical examples are presented.  相似文献   

11.
Let τ be an arbitrary lattice path, called in this context string, consisting of two kinds of steps (rises and falls) and let j be a non-negative integer.In this paper, the explicit formula for the generating function Fj associated with the Dyck path statistic “number of occurrences of τ at height j” is evaluated.For the expression of Fj some basic characteristics of the string are used, namely its number of rises, height, depth and periodicity, as well as the generating function of the Catalan numbers.  相似文献   

12.
13.
Let R be a family of k-element blocks of a v-element set V such that any two elements of V are contained in λ blocks of R and R=R1∪…∪Rv?1, RiRj=? (ij) and ?{BiRji=1,…,v?k}=V (Bi a block in Rj), i.e. R is a resolvable block design RB(v, k, λ). In this paper it will be shown that a sufficient condition for the existence of an RB(v, 8, 7) is that v≡0 (mod 8) and v is nondivisible by 3, 5, 7.  相似文献   

14.
Consider an ergodic Markov chain X(t) in continuous time with an infinitesimal matrix Q = (qij) defined on a finite state space {0, 1,…, N}. In this note, we prove that if X(t) is skip-free positive (negative, respectively), i.e., qij, = 0 for j > i+ 1 (i > j+ 1), then the transition probability pij(t) = Pr[X(t)=j | X(0) =i] can be represented as a linear combination of p0N(t) (p(m)(N0)(t)), 0 ≤ m ≤N, where f(m)(t) denotes the mth derivative of a function f(t) with f(0)(t) =f(t). If X(t) is a birth-death process, then pij(t) is represented as a linear combination of p0N(m)(t), 0 ≤mN - |i-j|.  相似文献   

15.
In this article, we study large deviations for non random difference ∑n1(t)j = 1X1j ? ∑n2(t)j = 1X2j and random difference ∑N1(t)j = 1X1j ? ∑N2(t)j = 1X2j, where {X1j, j ? 1} is a sequence of widely upper orthant dependent (WUOD) random variables with non identical distributions {F1j(x), j ? 1}, {X2j, j ? 1} is a sequence of independent identically distributed random variables, n1(t) and n2(t) are two positive integer-valued functions, and {Ni(t), t ? 0}2i = 1 with ENi(t) = λi(t) are two counting processes independent of {Xij, j ? 1}2i = 1. Under several assumptions, some results of precise large deviations for non random difference and random difference are derived, and some corresponding results are extended.  相似文献   

16.
Let X ∈ R be a random vector with a distribution which is invariant under rotations within the subspaces Vj (dim Vj. = qj) whose direct sum is R. The large sample distributions of the eigenvalues and vectors of Mn= n-1Σnl xixi are studied. In particular it is shown that several eigenvalue results of Anderson & Stephens (1972) for uniformly distributed unit vectors hold more generally.  相似文献   

17.
In this paper, we consider the problem of combining a number of opinions which have been expressed as probability measures P1, …, Pn, over some space. It is shown that a pooling formula which has the marginalization property of McConway (1981) must be of the form T = Σni=1Wi Pi + (1 - Σni =1Wi)Q, where Q is an arbitrary measure and W1, …, Wn ϵ [—1,1] are weights such that| ΣJ Σ j wj | ≤ 1 for every subset J of {1, …, n}. If, in addition, T is required to preserve the independence of arbitrary events A and B whenever these events are independent under each Pi, then either T = Pi for some 1 ≤ in or T = Q, in which case Q takes values in {0, l}.  相似文献   

18.
Abstract

Let the data from the ith treatment/population follow a distribution with cumulative distribution function (cdf) F i (x) = F[(x ? μ i )/θ i ], i = 1,…, k (k ≥ 2). Here μ i (?∞ < μ i  < ∞) is the location parameter, θ i i  > 0) is the scale parameter and F(?) is any absolutely continuous cdf, i.e., F i (?) is a member of location-scale family, i = 1,…, k. In this paper, we propose a class of tests to test the null hypothesis H 0 ? θ1 = · = θ k against the simple ordered alternative H A  ? θ1 ≤ · ≤ θ k with at least one strict inequality. In literature, use of sample quasi range as a measure of dispersion has been advocated for small sample size or sample contaminated by outliers [see David, H. A. (1981). Order Statistics. 2nd ed. New York: John Wiley, Sec. 7.4]. Let X i1,…, X in be a random sample of size n from the population π i and R ir  = X i:n?r  ? X i:r+1, r = 0, 1,…, [n/2] ? 1 be the sample quasi range corresponding to this random sample, where X i:j represents the jth order statistic in the ith sample, j = 1,…, n; i = 1,…, k and [x] is the greatest integer less than or equal to x. The proposed class of tests, for the general location scale setup, is based on the statistic W r  = max1≤i<jk (R jr /R ir ). The test is reject H 0 for large values of W r . The construction of a three-decision procedure and simultaneous one-sided lower confidence bounds for the ratios, θ j i , 1 ≤ i < j ≤ k, have also been discussed with the help of the critical constants of the test statistic W r . Applications of the proposed class of tests to two parameter exponential and uniform probability models have been discussed separately with necessary tables. Comparisons of some members of our class with the tests of Gill and Dhawan [Gill A. N., Dhawan A. K. (1999). A One-sided test for testing homogeneity of scale parameters against ordered alternative. Commun. Stat. – Theory and Methods 28(10):2417–2439] and Kochar and Gupta [Kochar, S. C., Gupta, R. P. (1985). A class of distribution-free tests for testing homogeneity of variances against ordered alternatives. In: Dykstra, R. et al., ed. Proceedings of the Conference on Advances in Order Restricted Statistical Inference at Iowa city. Springer Verlag, pp. 169–183], in terms of simulated power, are also presented.  相似文献   

19.
Consider the general unbalanced two-factor crossed components-of-variance model with interaction given by Yijk: = μ+Ai: +Bj: + Cij: +Eijk: (i = 1,2, … a; j = 1,…,b; k = 1,…,.nij:=0) Ai:,Bj:, Cij: and Eijk: are independent unobservable random variables. Also Ai:sim; N(0,σ2 A),Bj: ~ N(0,σ2 B), Cij:~N(0,s2 C:) and Eijk:~N(0,s2 E:). In this paper approximate confidence bounds are obtained for ρA: = ρ2 A/2 and ρB: = ρ2 B:/ρ2 (where σ2 = σ2 A:+ σ2 B2 Cσ2 E) for special cases of the above model. The balanced incomplete block model is studied as a special case.  相似文献   

20.
Consider the semiparametric regression model Yi = x′iβ +g(ti)+ei for i=1,2, …,n. Here the design points (xi,ti) are known and nonrandom and the ei are iid random errors with Ee1 = 0 and Ee2 1 = α2<∞. Based on g(.) approximated by a B-spline function, we consider using atest statistic for testing H0 : β = 0. Meanwhile, an adaptive parametric test statistic is constructed and a large sample study for this adaptive parametric test statistic is presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号