首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this article, we propose semiparametric methods to estimate the cumulative incidence function of two dependent competing risks for left-truncated and right-censored data. The proposed method is based on work by Huang and Wang (1995). We extend previous model by allowing for a general parametric truncation distribution and a third competing risk before recruitment. Based on work by Vardi (1989), several iterative algorithms are proposed to obtain the semiparametric estimates of cumulative incidence functions. The asymptotic properties of the semiparametric estimators are derived. Simulation results show that a semiparametric approach assuming the parametric truncation distribution is correctly specified produces estimates with smaller mean squared error than those obtained in a fully nonparametric model.  相似文献   

2.
In this paper, we propose a new semiparametric heteroscedastic regression model allowing for positive and negative skewness and bimodal shapes using the B-spline basis for nonlinear effects. The proposed distribution is based on the generalized additive models for location, scale and shape framework in order to model any or all parameters of the distribution using parametric linear and/or nonparametric smooth functions of explanatory variables. We motivate the new model by means of Monte Carlo simulations, thus ignoring the skewness and bimodality of the random errors in semiparametric regression models, which may introduce biases on the parameter estimates and/or on the estimation of the associated variability measures. An iterative estimation process and some diagnostic methods are investigated. Applications to two real data sets are presented and the method is compared to the usual regression methods.  相似文献   

3.
In this article, we consider the efficient estimation of the semiparametric transformation model with doubly truncated data. We propose a two-step approach for obtaining the pseudo maximum likelihood estimators (PMLE) of regression parameters. In the first step, the truncation time distribution is estimated by the nonparametric maximum likelihood estimator (Shen, 2010a) when the distribution function K of the truncation time is unspecified or by the conditional maximum likelihood estimator (Bilker and Wang, 1996) when K is parameterized. In the second step, using the pseudo complete-data likelihood function with the estimated distribution of truncation time, we propose expectation–maximization algorithms for obtaining the PMLE. We establish the consistency of the PMLE. The simulation study indicates that the PMLE performs well in finite samples. The proposed method is illustrated using an AIDS data set.  相似文献   

4.
It has been found that, for a variety of probability distributions, there is a surprising linear relation between mode, mean, and median. In this article, the relation between mode, mean, and median regression functions is assumed to follow a simple parametric model. We propose a semiparametric conditional mode (mode regression) estimation for an unknown (unimodal) conditional distribution function in the context of regression model, so that any m-step-ahead mean and median forecasts can then be substituted into the resultant model to deliver m-step-ahead mode prediction. In the semiparametric model, Least Squared Estimator (LSEs) for the model parameters and the simultaneous estimation of the unknown mean and median regression functions by the local linear kernel method are combined to infer about the parametric and nonparametric components of the proposed model. The asymptotic normality of these estimators is derived, and the asymptotic distribution of the parameter estimates is also given and is shown to follow usual parametric rates in spite of the presence of the nonparametric component in the model. These results are applied to obtain a data-based test for the dependence of mode regression over mean and median regression under a regression model.  相似文献   

5.
In this article, a semiparametric time‐varying nonlinear vector autoregressive (NVAR) model is proposed to model nonlinear vector time series data. We consider a combination of parametric and nonparametric estimation approaches to estimate the NVAR function for both independent and dependent errors. We use the multivariate Taylor series expansion of the link function up to the second order which has a parametric framework as a representation of the nonlinear vector regression function. After the unknown parameters are estimated by the maximum likelihood estimation procedure, the obtained NVAR function is adjusted by a nonparametric diagonal matrix, where the proposed adjusted matrix is estimated by the nonparametric kernel estimator. The asymptotic consistency properties of the proposed estimators are established. Simulation studies are conducted to evaluate the performance of the proposed semiparametric method. A real data example on short‐run interest rates and long‐run interest rates of United States Treasury securities is analyzed to demonstrate the application of the proposed approach. The Canadian Journal of Statistics 47: 668–687; 2019 © 2019 Statistical Society of Canada  相似文献   

6.
In this paper, semiparametric methods are applied to estimate multivariate volatility functions, using a residual approach as in [J. Fan and Q. Yao, Efficient estimation of conditional variance functions in stochastic regression, Biometrika 85 (1998), pp. 645–660; F.A. Ziegelmann, Nonparametric estimation of volatility functions: The local exponential estimator, Econometric Theory 18 (2002), pp. 985–991; F.A. Ziegelmann, A local linear least-absolute-deviations estimator of volatility, Comm. Statist. Simulation Comput. 37 (2008), pp. 1543–1564], among others. Our main goal here is two-fold: (1) describe and implement a number of semiparametric models, such as additive, single-index and (adaptive) functional-coefficient, in volatility estimation, all motivated as alternatives to deal with the curse of dimensionality present in fully nonparametric models; and (2) propose the use of a variation of the traditional cross-validation method to deal with model choice in the class of adaptive functional-coefficient models, choosing simultaneously the bandwidth, the number of covariates in the model and also the single-index smoothing variable. The modified cross-validation algorithm is able to tackle the computational burden caused by the model complexity, providing an important tool in semiparametric volatility estimation. We briefly discuss model identifiability when estimating volatility as well as nonnegativity of the resulting estimators. Furthermore, Monte Carlo simulations for several underlying generating models are implemented and applications to real data are provided.  相似文献   

7.
This paper focuses on efficient estimation, optimal rates of convergence and effective algorithms in the partly linear additive hazards regression model with current status data. We use polynomial splines to estimate both cumulative baseline hazard function with monotonicity constraint and nonparametric regression functions with no such constraint. We propose a simultaneous sieve maximum likelihood estimation for regression parameters and nuisance parameters and show that the resultant estimator of regression parameter vector is asymptotically normal and achieves the semiparametric information bound. In addition, we show that rates of convergence for the estimators of nonparametric functions are optimal. We implement the proposed estimation through a backfitting algorithm on generalized linear models. We conduct simulation studies to examine the finite‐sample performance of the proposed estimation method and present an analysis of renal function recovery data for illustration.  相似文献   

8.
We propose data generating structures which can be represented as the nonlinear autoregressive models with single and finite mixtures of scale mixtures of skew normal innovations. This class of models covers symmetric/asymmetric and light/heavy-tailed distributions, so provide a useful generalization of the symmetrical nonlinear autoregressive models. As semiparametric and nonparametric curve estimation are the approaches for exploring the structure of a nonlinear time series data set, in this article the semiparametric estimator for estimating the nonlinear function of the model is investigated based on the conditional least square method and nonparametric kernel approach. Also, an Expectation–Maximization-type algorithm to perform the maximum likelihood (ML) inference of unknown parameters of the model is proposed. Furthermore, some strong and weak consistency of the semiparametric estimator in this class of models are presented. Finally, to illustrate the usefulness of the proposed model, some simulation studies and an application to real data set are considered.  相似文献   

9.
Forecasting in economic data analysis is dominated by linear prediction methods where the predicted values are calculated from a fitted linear regression model. With multiple predictor variables, multivariate nonparametric models were proposed in the literature. However, empirical studies indicate the prediction performance of multi-dimensional nonparametric models may be unsatisfactory. We propose a new semiparametric model average prediction (SMAP) approach to analyse panel data and investigate its prediction performance with numerical examples. Estimation of individual covariate effect only requires univariate smoothing and thus may be more stable than previous multivariate smoothing approaches. The estimation of optimal weight parameters incorporates the longitudinal correlation and the asymptotic properties of the estimated results are carefully studied in this paper.  相似文献   

10.
Kai B  Li R  Zou H 《Annals of statistics》2011,39(1):305-332
The complexity of semiparametric models poses new challenges to statistical inference and model selection that frequently arise from real applications. In this work, we propose new estimation and variable selection procedures for the semiparametric varying-coefficient partially linear model. We first study quantile regression estimates for the nonparametric varying-coefficient functions and the parametric regression coefficients. To achieve nice efficiency properties, we further develop a semiparametric composite quantile regression procedure. We establish the asymptotic normality of proposed estimators for both the parametric and nonparametric parts and show that the estimators achieve the best convergence rate. Moreover, we show that the proposed method is much more efficient than the least-squares-based method for many non-normal errors and that it only loses a small amount of efficiency for normal errors. In addition, it is shown that the loss in efficiency is at most 11.1% for estimating varying coefficient functions and is no greater than 13.6% for estimating parametric components. To achieve sparsity with high-dimensional covariates, we propose adaptive penalization methods for variable selection in the semiparametric varying-coefficient partially linear model and prove that the methods possess the oracle property. Extensive Monte Carlo simulation studies are conducted to examine the finite-sample performance of the proposed procedures. Finally, we apply the new methods to analyze the plasma beta-carotene level data.  相似文献   

11.
In this paper we develop nonparametric methods for regression analysis when the response variable is subject to censoring and/or truncation. The development is based on a data completion princple that enables us to apply, via an iterative scheme, nonparametric regression techniques to iteratively com¬pleted data from a given sample with censored and/or truncated observations. In particular, locally weighted regression smoothers and additive regression models are extended to left-truncated and right-censored data Nonparamet¬ric regression analysis is applied to the Stanford heart transplant data, which have been analyzed by previous authors using semiparametric regression meth¬ods. and provides new insights into the relationship between expected survival time after a heart transplant and explanatory variables.  相似文献   

12.
We incorporate a random effect into a multivariate discrete proportional hazards model and propose an efficient semiparametric Bayesian estimation method. By introducing a prior process for the parameters of baseline hazards, we consider a nonparametric estimation of baseline hazards function. Using a state space representation, we derive a dynamic modeling of baseline hazards function and propose an efficient block sampler for Markov chain Monte Carlo method. A numerical example using kidney patients data is given.  相似文献   

13.
This paper is concerned with a semiparametric partially linear regression model with unknown regression coefficients, an unknown nonparametric function for the non-linear component, and unobservable Gaussian distributed random errors. We present a wavelet thresholding based estimation procedure to estimate the components of the partial linear model by establishing a connection between an l 1-penalty based wavelet estimator of the nonparametric component and Huber’s M-estimation of a standard linear model with outliers. Some general results on the large sample properties of the estimates of both the parametric and the nonparametric part of the model are established. Simulations are used to illustrate the general results and to compare the proposed methodology with other methods available in the recent literature.  相似文献   

14.
Many methods have been developed in the literature for regression analysis of current status data with noninformative censoring and also some approaches have been proposed for semiparametric regression analysis of current status data with informative censoring. However, the existing approaches for the latter situation are mainly on specific models such as the proportional hazards model and the additive hazard model. Corresponding to this, in this paper, we consider a general class of semiparametric linear transformation models and develop a sieve maximum likelihood estimation approach for the inference. In the method, the copula model is employed to describe the informative censoring or relationship between the failure time of interest and the censoring time, and Bernstein polynomials are used to approximate the nonparametric functions involved. The asymptotic consistency and normality of the proposed estimators are established, and an extensive simulation study is conducted and indicates that the proposed approach works well for practical situations. In addition, an illustrative example is provided.  相似文献   

15.
The generalized semiparametric mixed varying‐coefficient effects model for longitudinal data can accommodate a variety of link functions and flexibly model different types of covariate effects, including time‐constant, time‐varying and covariate‐varying effects. The time‐varying effects are unspecified functions of time and the covariate‐varying effects are nonparametric functions of a possibly time‐dependent exposure variable. A semiparametric estimation procedure is developed that uses local linear smoothing and profile weighted least squares, which requires smoothing in the two different and yet connected domains of time and the time‐dependent exposure variable. The asymptotic properties of the estimators of both nonparametric and parametric effects are investigated. In addition, hypothesis testing procedures are developed to examine the covariate effects. The finite‐sample properties of the proposed estimators and testing procedures are examined through simulations, indicating satisfactory performances. The proposed methods are applied to analyze the AIDS Clinical Trial Group 244 clinical trial to investigate the effects of antiretroviral treatment switching in HIV‐infected patients before and after developing the T215Y antiretroviral drug resistance mutation. The Canadian Journal of Statistics 47: 352–373; 2019 © 2019 Statistical Society of Canada  相似文献   

16.
In this paper, we consider the estimation of partially linear additive quantile regression models where the conditional quantile function comprises a linear parametric component and a nonparametric additive component. We propose a two-step estimation approach: in the first step, we approximate the conditional quantile function using a series estimation method. In the second step, the nonparametric additive component is recovered using either a local polynomial estimator or a weighted Nadaraya–Watson estimator. Both consistency and asymptotic normality of the proposed estimators are established. Particularly, we show that the first-stage estimator for the finite-dimensional parameters attains the semiparametric efficiency bound under homoskedasticity, and that the second-stage estimators for the nonparametric additive component have an oracle efficiency property. Monte Carlo experiments are conducted to assess the finite sample performance of the proposed estimators. An application to a real data set is also illustrated.  相似文献   

17.
When there are frequent capture occasions, both semiparametric and nonparametric estimators for the size of an open population have been proposed using kernel smoothing methods. While kernel smoothing methods are mathematically tractable, fitting them to data is computationally intensive. Here, we use smoothing splines in the form of P-splines to provide an alternate less computationally intensive method of fitting these models to capture–recapture data from open populations with frequent capture occasions. We fit the model to capture data collected over 64 occasions and model the population size as a function of time, seasonal effects and an environmental covariate. A small simulation study is also conducted to examine the performance of the estimators and their standard errors.  相似文献   

18.
A partially linear model is a semiparametric regression model that consists of parametric and nonparametric regression components in an additive form. In this article, we propose a partially linear model using a Gaussian process regression approach and consider statistical inference of the proposed model. Based on the proposed model, the estimation procedure is described by posterior distributions of the unknown parameters and model comparisons between parametric representation and semi- and nonparametric representation are explored. Empirical analysis of the proposed model is performed with synthetic data and real data applications.  相似文献   

19.
We study nonparametric estimation of the illness-death model using left-truncated and right-censored data. The general aim is to estimate the multivariate distribution of a progressive multi-state process. Maximum likelihood estimation under censoring suffers from problems of uniqueness and consistency, so instead we review and extend methods that are based on inverse probability weighting. For univariate left-truncated and right-censored data, nonparametric maximum likelihood estimation can be considerably improved when exploiting knowledge on the truncation distribution. We aim to examine the gain in using such knowledge for inverse probability weighting estimators in the illness-death framework. Additionally, we compare the weights that use truncation variables with the weights that integrate them out, showing, by simulation, that the latter performs more stably and efficiently. We apply the methods to intensive care units data collected in a cross-sectional design, and discuss how the estimators can be easily modified to more general multi-state models.  相似文献   

20.
Children exposed to mixtures of endocrine disrupting compounds such as phthalates are at high risk of experiencing significant friction in their growth and sexual maturation. This article is primarily motivated by a study that aims to assess the toxicants‐modified effects of risk factors related to the hazards of early or delayed onset of puberty among children living in Mexico City. To address the hypothesis of potential nonlinear modification of covariate effects, we propose a new Cox regression model with multiple functional covariate‐environment interactions, which allows covariate effects to be altered nonlinearly by mixtures of exposed toxicants. This new class of models is rather flexible and includes many existing semiparametric Cox models as special cases. To achieve efficient estimation, we develop the global partial likelihood method of inference, in which we establish key large‐sample results, including estimation consistency, asymptotic normality, semiparametric efficiency and the generalized likelihood ratio test for both parameters and nonparametric functions. The proposed methodology is examined via simulation studies and applied to the analysis of the motivating data, where maternal exposures to phthalates during the third trimester of pregnancy are found to be important risk modifiers for the age of attaining the first stage of puberty. The Canadian Journal of Statistics 47: 204–221; 2019 © 2019 Statistical Society of Canada  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号