首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 784 毫秒
1.
Jing Yang  Fang Lu  Hu Yang 《Statistics》2017,51(6):1179-1199
In this paper, we develop a new estimation procedure based on quantile regression for semiparametric partially linear varying-coefficient models. The proposed estimation approach is empirically shown to be much more efficient than the popular least squares estimation method for non-normal error distributions, and almost not lose any efficiency for normal errors. Asymptotic normalities of the proposed estimators for both the parametric and nonparametric parts are established. To achieve sparsity when there exist irrelevant variables in the model, two variable selection procedures based on adaptive penalty are developed to select important parametric covariates as well as significant nonparametric functions. Moreover, both these two variable selection procedures are demonstrated to enjoy the oracle property under some regularity conditions. Some Monte Carlo simulations are conducted to assess the finite sample performance of the proposed estimators, and a real-data example is used to illustrate the application of the proposed methods.  相似文献   

2.
This paper develops a varying-coefficient approach to the estimation and testing of regression quantiles under randomly truncated data. In order to handle the truncated data, the random weights are introduced and the weighted quantile regression (WQR) estimators for nonparametric functions are proposed. To achieve nice efficiency properties, we further develop a weighted composite quantile regression (WCQR) estimation method for nonparametric functions in varying-coefficient models. The asymptotic properties both for the proposed WQR and WCQR estimators are established. In addition, we propose a novel bootstrap-based test procedure to test whether the nonparametric functions in varying-coefficient quantile models can be specified by some function forms. The performance of the proposed estimators and test procedure are investigated through simulation studies and a real data example.  相似文献   

3.
Qunfang Xu 《Statistics》2017,51(6):1280-1303
In this paper, semiparametric modelling for longitudinal data with an unstructured error process is considered. We propose a partially linear additive regression model for longitudinal data in which within-subject variances and covariances of the error process are described by unknown univariate and bivariate functions, respectively. We provide an estimating approach in which polynomial splines are used to approximate the additive nonparametric components and the within-subject variance and covariance functions are estimated nonparametrically. Both the asymptotic normality of the resulting parametric component estimators and optimal convergence rate of the resulting nonparametric component estimators are established. In addition, we develop a variable selection procedure to identify significant parametric and nonparametric components simultaneously. We show that the proposed SCAD penalty-based estimators of non-zero components have an oracle property. Some simulation studies are conducted to examine the finite-sample performance of the proposed estimation and variable selection procedures. A real data set is also analysed to demonstrate the usefulness of the proposed method.  相似文献   

4.
In this paper, we consider the estimation of partially linear additive quantile regression models where the conditional quantile function comprises a linear parametric component and a nonparametric additive component. We propose a two-step estimation approach: in the first step, we approximate the conditional quantile function using a series estimation method. In the second step, the nonparametric additive component is recovered using either a local polynomial estimator or a weighted Nadaraya–Watson estimator. Both consistency and asymptotic normality of the proposed estimators are established. Particularly, we show that the first-stage estimator for the finite-dimensional parameters attains the semiparametric efficiency bound under homoskedasticity, and that the second-stage estimators for the nonparametric additive component have an oracle efficiency property. Monte Carlo experiments are conducted to assess the finite sample performance of the proposed estimators. An application to a real data set is also illustrated.  相似文献   

5.
This paper presents a Bayesian analysis of partially linear additive models for quantile regression. We develop a semiparametric Bayesian approach to quantile regression models using a spectral representation of the nonparametric regression functions and the Dirichlet process (DP) mixture for error distribution. We also consider Bayesian variable selection procedures for both parametric and nonparametric components in a partially linear additive model structure based on the Bayesian shrinkage priors via a stochastic search algorithm. Based on the proposed Bayesian semiparametric additive quantile regression model referred to as BSAQ, the Bayesian inference is considered for estimation and model selection. For the posterior computation, we design a simple and efficient Gibbs sampler based on a location-scale mixture of exponential and normal distributions for an asymmetric Laplace distribution, which facilitates the commonly used collapsed Gibbs sampling algorithms for the DP mixture models. Additionally, we discuss the asymptotic property of the sempiparametric quantile regression model in terms of consistency of posterior distribution. Simulation studies and real data application examples illustrate the proposed method and compare it with Bayesian quantile regression methods in the literature.  相似文献   

6.
In this article, a new composite quantile regression estimation approach is proposed for estimating the parametric part of single-index model. We use local linear composite quantile regression (CQR) for estimating the nonparametric part of single-index model (SIM) when the error distribution is symmetrical. The weighted local linear CQR is proposed for estimating the nonparametric part of SIM when the error distribution is asymmetrical. Moreover, a new variable selection procedure is proposed for SIM. Under some regularity conditions, we establish the large sample properties of the proposed estimators. Simulation studies and a real data analysis are presented to illustrate the behavior of the proposed estimators.  相似文献   

7.
In this paper, we consider a semiparametric regression model under long-range dependent errors. By approximating the nonparametric component by a finite series sum, we construct consistent estimators for both parametric and nonparametric components. Meanwhile, convergence rates for the consistent estimators are also investigated. Additionally, an optimal truncation parameter selection procedure is proposed.  相似文献   

8.
The authors consider a semiparametric partially linear regression model with serially correlated errors. They propose a new way of estimating the error structure which has the advantage that it does not involve any nonparametric estimation. This allows them to develop an inference procedure consisting of a bandwidth selection method, an efficient semiparametric generalized least squares estimator of the parametric component, a goodness‐of‐fit test based on the bootstrap, and a technique for selecting significant covariates in the parametric component. They assess their approach through simulation studies and illustrate it with a concrete application.  相似文献   

9.
Efficient inference for regression models requires that the heteroscedasticity be taken into account. We consider statistical inference under heteroscedasticity in a semiparametric measurement error regression model, in which some covariates are measured with errors. This paper has multiple components. First, we propose a new method for testing the heteroscedasticity. The advantages of the proposed method over the existing ones are that it does not need any nonparametric estimation and does not involve any mismeasured variables. Second, we propose a new two-step estimator for the error variances if there is heteroscedasticity. Finally, we propose a weighted estimating equation-based estimator (WEEBE) for the regression coefficients and establish its asymptotic properties. Compared with existing estimators, the proposed WEEBE is asymptotically more efficient, avoids undersmoothing the regressor functions and requires less restrictions on the observed regressors. Simulation studies show that the proposed test procedure and estimators have nice finite sample performance. A real data set is used to illustrate the utility of our proposed methods.  相似文献   

10.
In this paper, we propose robust randomized quantile regression estimators for the mean and (condition) variance functions of the popular heteroskedastic non parametric regression model. Unlike classical approaches which consider quantile as a fixed quantity, our method treats quantile as a uniformly distributed random variable. Our proposed method can be employed to estimate the error distribution, which could significantly improve prediction results. An automatic bandwidth selection scheme will be discussed. Asymptotic properties and relative efficiencies of the proposed estimators are investigated. Our empirical results show that the proposed estimators work well even for random errors with infinite variances. Various numerical simulations and two real data examples are used to demonstrate our methodologies.  相似文献   

11.
ABSTRACT

In this paper, we propose a new efficient and robust penalized estimating procedure for varying-coefficient single-index models based on modal regression and basis function approximations. The proposed procedure simultaneously solves two types of problems: separation of varying and constant effects and selection of variables with non zero coefficients for both non parametric and index components using three smoothly clipped absolute deviation (SCAD) penalties. With appropriate selection of the tuning parameters, the new method possesses the consistency in variable selection and the separation of varying and constant coefficients. In addition, the estimators of varying coefficients possess the optimal convergence rate and the estimators of constant coefficients and index parameters have the oracle property. Finally, we investigate the finite sample performance of the proposed method through a simulation study and real data analysis.  相似文献   

12.
In this article, empirical likelihood inferences for semiparametric varying-coefficient partially linear models with longitudinal data are investigated. We propose a groupwise empirical likelihood procedure to handle the inter-series dependence of the longitudinal data. By using residual-adjustment, an empirical likelihood ratio function for the nonparametric component is constructed, and a nonparametric version Wilks' phenomenons is proved. Compared with methods based on normal approximations, the empirical likelihood does not require consistent estimators for the asymptotic variance and bias. A simulation study is undertaken to assess the finite sample performance of the proposed confidence regions.  相似文献   

13.
In this paper, a new estimation procedure based on composite quantile regression and functional principal component analysis (PCA) method is proposed for the partially functional linear regression models (PFLRMs). The proposed estimation method can simultaneously estimate both the parametric regression coefficients and functional coefficient components without specification of the error distributions. The proposed estimation method is shown to be more efficient empirically for non-normal random error, especially for Cauchy error, and almost as efficient for normal random errors. Furthermore, based on the proposed estimation procedure, we use the penalized composite quantile regression method to study variable selection for parametric part in the PFLRMs. Under certain regularity conditions, consistency, asymptotic normality, and Oracle property of the resulting estimators are derived. Simulation studies and a real data analysis are conducted to assess the finite sample performance of the proposed methods.  相似文献   

14.
Abstract

In this paper we are concerned with variable selection in finite mixture of semiparametric regression models. This task consists of model selection for non parametric component and variable selection for parametric part. Thus, we encountered separate model selections for every non parametric component of each sub model. To overcome this computational burden, we introduced a class of variable selection procedures for finite mixture of semiparametric regression models using penalized approach for variable selection. It is shown that the new method is consistent for variable selection. Simulations show that the performance of proposed method is good, and it consequently improves pervious works in this area and also requires much less computing power than existing methods.  相似文献   

15.
Partially linear varying coefficient models (PLVCMs) with heteroscedasticity are considered in this article. Based on composite quantile regression, we develop a weighted composite quantile regression (WCQR) to estimate the non parametric varying coefficient functions and the parametric regression coefficients. The WCQR is augmented using a data-driven weighting scheme. Moreover, the asymptotic normality of proposed estimators for both the parametric and non parametric parts are studied explicitly. In addition, by comparing the asymptotic relative efficiency theoretically and numerically, WCQR method all outperforms the CQR method and some other estimate methods. To achieve sparsity with high-dimensional covariates, we develop a variable selection procedure to select significant parametric components for the PLVCM and prove the method possessing the oracle property. Both simulations and data analysis are conducted to illustrate the finite-sample performance of the proposed methods.  相似文献   

16.
In this article, we propose semiparametric methods to estimate the cumulative incidence function of two dependent competing risks for left-truncated and right-censored data. The proposed method is based on work by Huang and Wang (1995). We extend previous model by allowing for a general parametric truncation distribution and a third competing risk before recruitment. Based on work by Vardi (1989), several iterative algorithms are proposed to obtain the semiparametric estimates of cumulative incidence functions. The asymptotic properties of the semiparametric estimators are derived. Simulation results show that a semiparametric approach assuming the parametric truncation distribution is correctly specified produces estimates with smaller mean squared error than those obtained in a fully nonparametric model.  相似文献   

17.
ABSTRACT

The varying-coefficient single-index model (VCSIM) is a very general and flexible tool for exploring the relationship between a response variable and a set of predictors. Popular special cases include single-index models and varying-coefficient models. In order to estimate the index-coefficient and the non parametric varying-coefficients in the VCSIM, we propose a two-stage composite quantile regression estimation procedure, which integrates the local linear smoothing method and the information of quantile regressions at a number of conditional quantiles of the response variable. We establish the asymptotic properties of the proposed estimators for the index-coefficient and varying-coefficients when the error is heterogeneous. When compared with the existing mean-regression-based estimation method, our simulation results indicate that our proposed method has comparable performance for normal error and is more robust for error with outliers or heavy tail. We illustrate our methodologies with a real example.  相似文献   

18.
This paper develops a novel weighted composite quantile regression (CQR) method for estimation of a linear model when some covariates are missing at random and the probability for missingness mechanism can be modelled parametrically. By incorporating the unbiased estimating equations of incomplete data into empirical likelihood (EL), we obtain the EL-based weights, and then re-adjust the inverse probability weighted CQR for estimating the vector of regression coefficients. Theoretical results show that the proposed method can achieve semiparametric efficiency if the selection probability function is correctly specified, therefore the EL weighted CQR is more efficient than the inverse probability weighted CQR. Besides, our algorithm is computationally simple and easy to implement. Simulation studies are conducted to examine the finite sample performance of the proposed procedures. Finally, we apply the new method to analyse the US news College data.  相似文献   

19.
In this paper, we propose a new semiparametric heteroscedastic regression model allowing for positive and negative skewness and bimodal shapes using the B-spline basis for nonlinear effects. The proposed distribution is based on the generalized additive models for location, scale and shape framework in order to model any or all parameters of the distribution using parametric linear and/or nonparametric smooth functions of explanatory variables. We motivate the new model by means of Monte Carlo simulations, thus ignoring the skewness and bimodality of the random errors in semiparametric regression models, which may introduce biases on the parameter estimates and/or on the estimation of the associated variability measures. An iterative estimation process and some diagnostic methods are investigated. Applications to two real data sets are presented and the method is compared to the usual regression methods.  相似文献   

20.
We investigate the estimators of parameters of interest for a single-index varying-coefficient model. To estimate the unknown parameter efficiently, we first estimate the nonparametric component using local linear smoothing, then construct an estimator of parametric component by using estimating equations. Our estimator for the parametric component is asymptotically efficient, and the estimator of nonparametric component has asymptotic normality and optimal uniform convergence rate. Our results provide ways to construct confidence regions for the involved unknown parameters. The finite-sample behavior of the new estimators is evaluated through simulation studies, and applications to two real data are illustrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号