首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract.  We consider inference for a semiparametric regression model where some covariates are measured with errors, and the errors in both the regression model and the mismeasured covariates are serially correlated. We propose a weighted estimating equations-based estimator (WEEBE) for the regression coefficients. We show that the WEEBE is asymptotically more efficient than the estimators that neglect the serial correlations. This is an interesting new finding since earlier results in the statistical literature have shown that the weighted estimation is not as efficient as the unweighted estimation when the measurement errors and serially correlated errors of the regression models exist simultaneously (Biometrics, 49, 1993, 1262; Technometrics, 42, 2000, 137). The proposed WEEBE does not require undersmoothing the regressor functions in order to make it attain the root- n consistency. Simulation studies show that the proposed estimator has nice finite sample properties. A real data set is used to illustrate the proposed method.  相似文献   

2.
This paper addresses the problem of the probability density estimation in the presence of covariates when data are missing at random (MAR). The inverse probability weighted method is used to define a nonparametric and a semiparametric weighted probability density estimators. A regression calibration technique is also used to define an imputed estimator. It is shown that all the estimators are asymptotically normal with the same asymptotic variance as that of the inverse probability weighted estimator with known selection probability function and weights. Also, we establish the mean squared error (MSE) bounds and obtain the MSE convergence rates. A simulation is carried out to assess the proposed estimators in terms of the bias and standard error.  相似文献   

3.
Conditional variance estimation in heteroscedastic regression models   总被引:1,自引:0,他引:1  
First, we propose a new method for estimating the conditional variance in heteroscedasticity regression models. For heavy tailed innovations, this method is in general more efficient than either of the local linear and local likelihood estimators. Secondly, we apply a variance reduction technique to improve the inference for the conditional variance. The proposed methods are investigated through their asymptotic distributions and numerical performances.  相似文献   

4.
We consider estimating the mode of a response given an error‐prone covariate. It is shown that ignoring measurement error typically leads to inconsistent inference for the conditional mode of the response given the true covariate, as well as misleading inference for regression coefficients in the conditional mode model. To account for measurement error, we first employ the Monte Carlo corrected score method (Novick & Stefanski, 2002) to obtain an unbiased score function based on which the regression coefficients can be estimated consistently. To relax the normality assumption on measurement error this method requires, we propose another method where deconvoluting kernels are used to construct an objective function that is maximized to obtain consistent estimators of the regression coefficients. Besides rigorous investigation on asymptotic properties of the new estimators, we study their finite sample performance via extensive simulation experiments, and find that the proposed methods substantially outperform a naive inference method that ignores measurement error. The Canadian Journal of Statistics 47: 262–280; 2019 © 2019 Statistical Society of Canada  相似文献   

5.
Neglecting heteroscedasticity of error terms may imply the wrong identification of a regression model (see appendix). Employment of (heteroscedasticity resistent) White's estimator of covariance matrix of estimates of regression coefficients may lead to the correct decision about the significance of individual explanatory variables under heteroscedasticity. However, White's estimator of covariance matrix was established for least squares (LS)-regression analysis (in the case when error terms are normally distributed, LS- and maximum likelihood (ML)-analysis coincide and hence then White's estimate of covariance matrix is available for ML-regression analysis, tool). To establish White's-type estimate for another estimator of regression coefficients requires Bahadur representation of the estimator in question, under heteroscedasticity of error terms. The derivation of Bahadur representation for other (robust) estimators requires some tools. As the key too proved to be a tight approximation of the empirical distribution function (d.f.) of residuals by the theoretical d.f. of the error terms of the regression model. We need the approximation to be uniform in the argument of d.f. as well as in regression coefficients. The present paper offers this approximation for the situation when the error terms are heteroscedastic.  相似文献   

6.
The stability of a slightly modified version of the usual jackknife variance estimator is evaluated exactly in small samples under a suitable linear regression model and compared with that of two different linearization variance estimators. Depending on the degree of heteroscedasticity of the error variance in the model, the stability of the jackknife variance estimator is found to be somewhat comparable to that of one or the other of the linearization variance estimators under conditions especially favorable to ratio estimation (i.e., regression approximately through the origin with a relatively small coefficient of variation in the x population). When these conditions do not hold, however, the jackknife variance estimator is found to be less stable than either of the linearization variance estimators.  相似文献   

7.
Quasi-likelihood was extended to right censored data to handle heteroscedasticity in the frame of the accelerated failure time (AFT) model. However, the assumption of known variance function in the quasi-likelihood for right censored data is usually unrealistic. In this paper, we propose a nonparametric quasi-likelihood by replacing the specified variance function with a nonparametric variance function estimator. This nonparametric variance function estimator is obtained by smoothing a function of squared residuals via local polynomial regression. The rate of convergence of the nonparametric variance function estimator and the asymptotic limiting distributions of the regression coefficient estimators are derived. It is demonstrated in simulations that for finite samples the proposed nonparametric quasi-likelihood method performs well. The new method is illustrated with one real dataset.  相似文献   

8.
In survival analysis, time-dependent covariates are usually present as longitudinal data collected periodically and measured with error. The longitudinal data can be assumed to follow a linear mixed effect model and Cox regression models may be used for modelling of survival events. The hazard rate of survival times depends on the underlying time-dependent covariate measured with error, which may be described by random effects. Most existing methods proposed for such models assume a parametric distribution assumption on the random effects and specify a normally distributed error term for the linear mixed effect model. These assumptions may not be always valid in practice. In this article, we propose a new likelihood method for Cox regression models with error-contaminated time-dependent covariates. The proposed method does not require any parametric distribution assumption on random effects and random errors. Asymptotic properties for parameter estimators are provided. Simulation results show that under certain situations the proposed methods are more efficient than the existing methods.  相似文献   

9.
Varying coefficient partially linear models are usually used for longitudinal data analysis, and an interest is mainly to improve efficiency of regression coefficients. By the orthogonality estimation technology and the quadratic inference function method, we propose a new orthogonality-based estimation method to estimate parameter and nonparametric components in varying coefficient partially linear models with longitudinal data. The proposed procedure can separately estimate the parametric and nonparametric components, and the resulting estimators do not affect each other. Under some mild conditions, we establish some asymptotic properties of the resulting estimators. Furthermore, the finite sample performance of the proposed procedure is assessed by some simulation experiments.  相似文献   

10.
Nonparametric models with jump points have been considered by many researchers. However, most existing methods based on least squares or likelihood are sensitive when there are outliers or the error distribution is heavy tailed. In this article, a local piecewise-modal method is proposed to estimate the regression function with jump points in nonparametric models, and a piecewise-modal EM algorithm is introduced to estimate the proposed estimator. Under some regular conditions, the large-sample theory is established for the proposed estimators. Several simulations are presented to evaluate the performances of the proposed method, which shows that the proposed estimator is more efficient than the local piecewise-polynomial regression estimator in the presence of outliers or heavy tail error distribution. What is more, the proposed procedure is asymptotically equivalent to the local piecewise-polynomial regression estimator under the assumption that the error distribution is a Gaussian distribution. The proposed method is further illustrated via the sea-level pressures.  相似文献   

11.
Missing data analysis requires assumptions about an outcome model or a response probability model to adjust for potential bias due to nonresponse. Doubly robust (DR) estimators are consistent if at least one of the models is correctly specified. Multiply robust (MR) estimators extend DR estimators by allowing for multiple models for both the outcome and/or response probability models and are consistent if at least one of the multiple models is correctly specified. We propose a robust quasi-randomization-based model approach to bring more protection against model misspecification than the existing DR and MR estimators, where any multiple semiparametric, nonparametric or machine learning models can be used for the outcome variable. The proposed estimator achieves unbiasedness by using a subsampling Rao–Blackwell method, given cell-homogenous response, regardless of any working models for the outcome. An unbiased variance estimation formula is proposed, which does not use any replicate jackknife or bootstrap methods. A simulation study shows that our proposed method outperforms the existing multiply robust estimators.  相似文献   

12.
This paper is concerned with model averaging procedure for varying-coefficient partially linear models with missing responses. The profile least-squares estimation process and inverse probability weighted method are employed to estimate regression coefficients of the partially restricted models, in which the propensity score is estimated by the covariate balancing propensity score method. The estimators of the linear parameters are shown to be asymptotically normal. Then we develop the focused information criterion, formulate the frequentist model averaging estimators and construct the corresponding confidence intervals. Some simulation studies are conducted to examine the finite sample performance of the proposed methods. We find that the covariate balancing propensity score improves the performance of the inverse probability weighted estimator. We also demonstrate the superiority of the proposed model averaging estimators over those of existing strategies in terms of mean squared error and coverage probability. Finally, our approach is further applied to a real data example.  相似文献   

13.
MODEL-ASSISTED HIGHER-ORDER CALIBRATION OF ESTIMATORS OF VARIANCE   总被引:1,自引:0,他引:1  
In survey sampling, interest often centres on inference for the population total using information about an auxiliary variable. The variance of the estimator used plays a key role in such inference. This study develops a new set of higher‐order constraints for the calibration of estimators of variance for various estimators of the population total. The proposed strategy requires an appropriate model for describing the relationship between the response and auxiliary variable, and the variance of the auxiliary variable. It is therefore referred to as a model‐assisted approach. Several new estimators of variance, including the higher‐order calibration estimators of the variance of the ratio and regression estimators suggested by Singh, Horn & Yu and Sitter & Wu are special cases of the proposed technique. The paper presents and discusses the results of an empirical study to compare the performance of the proposed estimators and existing counterparts.  相似文献   

14.
In this paper, we propose a general kth correlation coefficient between the density function and distribution function of a continuous variable as a measure of symmetry and asymmetry. We first propose a root-n moment-based estimator of the kth correlation coefficient and present its asymptotic results. Next, we consider statistical inference of the kth correlation coefficient by using the empirical likelihood (EL) method. The EL statistic is shown to be asymptotically a standard chi-squared distribution. Last, we propose a residual-based estimator of the kth correlation coefficient for a parametric regression model to test whether the density function of the true model error is symmetric or not. We present the asymptotic results of the residual-based kth correlation coefficient estimator and also construct its EL-based confidence intervals. Simulation studies are conducted to examine the performance of the proposed estimators, and we also use our proposed estimators to analyze the air quality dataset.  相似文献   

15.
In this paper, we consider a regression model and propose estimators which are the weighted averages of two estimators among three estimators; the Stein-rule (SR), the minimum mean squared error (MMSE), and the adjusted minimum mean-squared error (AMMSE) estimators. It is shown that one of the proposed estimators has smaller mean-squared error (MSE) than the positive-part Stein-rule (PSR) estimator over a moderate region of parameter space when the number of the regression coefficients is small (i.e., 3), and its MSE performance is comparable to the PSR estimator even when the number of the regression coefficients is not so small.  相似文献   

16.
In the context of estimating regression coefficients of an ill-conditioned binary logistic regression model, we develop a new biased estimator having two parameters for estimating the regression vector parameter β when it is subjected to lie in the linear subspace restriction Hβ = h. The matrix mean squared error and mean squared error (MSE) functions of these newly defined estimators are derived. Moreover, a method to choose the two parameters is proposed. Then, the performance of the proposed estimator is compared to that of the restricted maximum likelihood estimator and some other existing estimators in the sense of MSE via a Monte Carlo simulation study. According to the simulation results, the performance of the estimators depends on the sample size, number of explanatory variables, and degree of correlation. The superiority region of our proposed estimator is identified based on the biasing parameters, numerically. It is concluded that the new estimator is superior to the others in most of the situations considered and it is recommended to the researchers.  相似文献   

17.
It is common for linear regression models that the error variances are not the same for all observations and there are some high leverage data points. In such situations, the available literature advocates the use of heteroscedasticity consistent covariance matrix estimators (HCCME) for the testing of regression coefficients. Primarily, such estimators are based on the residuals derived from the ordinary least squares (OLS) estimator that itself can be seriously inefficient in the presence of heteroscedasticity. To get efficient estimation, many efficient estimators, namely the adaptive estimators are available but their performance has not been evaluated yet when the problem of heteroscedasticity is accompanied with the presence of high leverage data. In this article, the presence of high leverage data is taken into account to evaluate the performance of the adaptive estimator in terms of efficiency. Furthermore, our numerical work also evaluates the performance of the robust standard errors based on this efficient estimator in terms of interval estimation and null rejection rate (NRR).  相似文献   

18.
Outer product of gradients (OPG) achieves dimension reduction via estimating the gradients of the regression function. In this paper, we propose two novel OPG estimators via local rank regression: the rank OPG estimator and the Walsh-average OPG estimator. Both proposals guard against a wide range of error distributions, and are safe alternatives to existing OPG estimators based on local linear regression or local L1 regression. The effectiveness of the new proposals are demonstrated via extensive numerical studies.  相似文献   

19.
To enhance modeling flexibility, the authors propose a nonparametric hazard regression model, for which the ordinary and weighted least squares estimation and inference procedures are studied. The proposed model does not assume any parametric specifications on the covariate effects, which is suitable for exploring the nonlinear interactions between covariates, time and some exposure variable. The authors propose the local ordinary and weighted least squares estimators for the varying‐coefficient functions and establish the corresponding asymptotic normality properties. Simulation studies are conducted to empirically examine the finite‐sample performance of the new methods, and a real data example from a recent breast cancer study is used as an illustration. The Canadian Journal of Statistics 37: 659–674; 2009 © 2009 Statistical Society of Canada  相似文献   

20.
The importance of being able to detect heteroscedasticity in regression is widely recognized because efficient inference for the regression function requires that heteroscedasticity is taken into account. In this paper a simple consistent test for heteroscedasticity is proposed in a nonparametric regression set-up. The test is based on an estimator for the best L 2-approximation of the variance function by a constant. Under mild assumptions asymptotic normality of the corresponding test statistic is established even under arbitrary fixed alternatives. Confidence intervals are obtained for a corresponding measure of heteroscedasticity. The finite sample performance and robustness of these procedures are investigated in a simulation study and Box-type corrections are suggested for small sample sizes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号