首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Birnbaum–Saunders (BS) distribution is a positively skewed distribution, frequently used for analysing lifetime data. In this paper, we propose a simple method of estimation for the parameters of the two-parameter BS distribution by making use of some key properties of the distribution. Compared with the maximum likelihood estimators and the modified moment estimators, the proposed method has smaller bias, but having the same mean square errors as these two estimators. We also discuss some methods of construction of confidence intervals. The performance of the estimators is then assessed by means of Monte Carlo simulations. Finally, an example is used to illustrate the method of estimation developed here.  相似文献   

2.
The Fisher distribution is a standard model for directional data (or spherical data). In some cases though, only the co-latitudes can be observed, resulting in a sample of observations from the corresponding marginal distribution. This paper reports on an extensive simulation to compare and evaluate the robustness of 11 test-statistics corresponding to various estimators of the parameters of this distribution. The estimators include Maximum Likelihood and Moment-type estimators, as well as sample means and variances based on approximations to the marginal Fisher distribution. Of the test-statistics considered, the Likelihood-Ratio statistic was the only one whose sampling distribution remained close to its asymptotic distribution for all parameter values and sample sizes considered. In general, the other statistics were close to their approximate distributions only when ksin2?0, was fairly large. The paper includes details on the computational methods for finding the Maximum Likelihood and Moment estimators, and concludes with some practical advice on the choice of estimation procedure.  相似文献   

3.
In this paper, we consider the problem of estimating the location and scale parameters of an extreme value distribution based on multiply Type-II censored samples. We first describe the best linear unbiased estimators and the maximum likelihood estimators of these parameters. After observing that the best linear unbiased estimators need the construction of some tables for its coefficients and that the maximum likelihood estimators do not exist in an explicit algebraic form and hence need to be found by numerical methods, we develop approximate maximum likelihood estimators by appropriately approximating the likelihood equations. In addition to being simple explicit estimators, these estimators turn out to be nearly as efficient as the best linear unbiased estimators and the maximum likelihood estimators. Next, we derive the asymptotic variances and covariance of these estimators in terms of the first two single moments and the product moments of order statistics from the standard extreme value distribution. Finally, we present an example in order to illustrate all the methods of estimation of parameters discussed in this paper.  相似文献   

4.
The explicit estimators of the parameters α, μ?and?σ2 are obtained by using the methodology known as modified maximum likelihood (MML) when the distribution of the first occurrence time of an event is assumed to be Weibull in series process. The efficiencies of the MML estimators are compared with the corresponding nonparametric (NP) estimators and it is shown that the proposed estimators have higher efficiencies than the NP estimators. In this study, we extend these results to the case, where the distribution of the first occurrence time is Gamma. It is another widely used and well-known distribution in reliability analysis. A real data set taken from the literature is analyzed at the end of the study for better understanding the methodology presented in this paper.  相似文献   

5.
This article considers a class of estimators for the location and scale parameters in the location-scale model based on ‘synthetic data’ when the observations are randomly censored on the right. The asymptotic normality of the estimators is established using counting process and martingale techniques when the censoring distribution is known and unknown, respectively. In the case when the censoring distribution is known, we show that the asymptotic variances of this class of estimators depend on the data transformation and have a lower bound which is not achievable by this class of estimators. However, in the case that the censoring distribution is unknown and estimated by the Kaplan–Meier estimator, this class of estimators has the same asymptotic variance and attains the lower bound for variance for the case of known censoring distribution. This is different from censored regression analysis, where asymptotic variances depend on the data transformation. Our method has three valuable advantages over the method of maximum likelihood estimation. First, our estimators are available in a closed form and do not require an iterative algorithm. Second, simulation studies show that our estimators being moment-based are comparable to maximum likelihood estimators and outperform them when sample size is small and censoring rate is high. Third, our estimators are more robust to model misspecification than maximum likelihood estimators. Therefore, our method can serve as a competitive alternative to the method of maximum likelihood in estimation for location-scale models with censored data. A numerical example is presented to illustrate the proposed method.  相似文献   

6.
Abstract

Statistical distributions are very useful in describing and predicting real world phenomena. In many applied areas there is a clear need for the extended forms of the well-known distributions. Generally, the new distributions are more flexible to model real data that present a high degree of skewness and kurtosis. The choice of the best-suited statistical distribution for modeling data is very important.

In this article, we proposed an extended generalized Gompertz (EGGo) family of EGGo. Certain statistical properties of EGGo family including distribution shapes, hazard function, skewness, limit behavior, moments and order statistics are discussed. The flexibility of this family is assessed by its application to real data sets and comparison with other competing distributions. The maximum likelihood equations for estimating the parameters based on real data are given. The performances of the estimators such as maximum likelihood estimators, least squares estimators, weighted least squares estimators, Cramer-von-Mises estimators, Anderson-Darling estimators and right tailed Anderson-Darling estimators are discussed. The likelihood ratio test is derived to illustrate that the EGGo distribution is better than other nested models in fitting data set or not. We use R software for simulation in order to perform applications and test the validity of this model.  相似文献   

7.
Common kernel density estimators (KDE) are generalised, which involve that assumptions on the kernel of the distribution can be given. Instead of using metrics as input to the kernels, the new estimators use parameterisable pseudometrics. In general, the volumes of the balls in pseudometric spaces are dependent on both the radius and the location of the centre. To enable constant smoothing, the volumes of the balls need to be calculated and analytical expressions are preferred for computational reasons. Two suitable parametric families of pseudometrics are identified. One of them has common KDE as special cases. In a few experiments, the proposed estimators show increased statistical power when proper assumptions are made. As a consequence, this paper describes an approach, where partial knowledge about the distribution can be used effectively. Furthermore, it is suggested that the new estimators are adequate for statistical learning algorithms such as regression and classification.  相似文献   

8.
Recently, spatial regression models have been attracting a great deal of attention in areas ranging from effect of traffic congestion on accident rates to the analysis of trends in gastric cancer mortality. In this paper, we propose efficient estimators for the regression coefficients of the spatial conditional autoregressive model, when uncertain auxiliary information is available about these coefficients. We provide efficiency comparisons of the proposed estimators based on asymptotic risk analysis and Monte Carlo simulations. We apply the proposed methods to real data on Boston housing prices and illustrate how a bootstrapping approach can be employed to compute prediction errors of the estimators.  相似文献   

9.
It is well-known that maximum likelihood (ML) estimators of the two parameters in a gamma distribution do not have closed forms. This poses difficulties in some applications such as real-time signal processing using low-grade processors. The gamma distribution is a special case of a generalized gamma distribution. Surprisingly, two out of the three likelihood equations of the generalized gamma distribution can be used as estimating equations for the gamma distribution, based on which simple closed-form estimators for the two gamma parameters are available. Intuitively, performance of the new estimators based on likelihood equations should be close to the ML estimators. The study consolidates this conjecture by establishing the asymptotic behaviors of the new estimators. In addition, the closed-forms enable bias-corrections to these estimators. The bias-correction significantly improves the small-sample performance.  相似文献   

10.
In this paper we introduce a new distribution, namely, the slashed half-normal distribution and it can be seen as an extension of the half-normal distribution. It is shown that the resulting distribution has more kurtosis than the ordinary half-normal distribution. Moments and some properties are derived for the new distribution. Moment estimators and maximum likelihood estimators can computed using numerical procedures. Results of two real data application are reported where model fitting is implemented by using maximum likelihood estimation. The applications illustrate the better performance of the new distribution.  相似文献   

11.
This article deals with the estimation of a fixed population size through capture-mark-recapture method that gives rise to hypergeometric distribution. There are a few well-known and popular point estimators available in the literature, but no good comprehensive comparison is available about their merits. Apart from the available estimators, an empirical Bayes (EB) estimator of the population size is proposed. We compare all the point estimators in terms of relative bias and relative mean squared error. Next, two new interval estimators – (a) an EB highest posterior distribution interval and (b) a frequentist interval estimator based on a parametric bootstrap method, are proposed. The comparison is then carried among the two proposed interval estimators and interval estimators derived from the currently available estimators in terms of coverage probability and average length (AL). Based on comprehensive numerical results, we rank and recommend the point estimators as well as interval estimators for practical use. Finally, a real-life data set for a green treefrog population is used as a demonstration for all the methods discussed.  相似文献   

12.
We consider the right truncated exponential distribution where the truncation point is unknown and show that the ML equation has a unique solution over an extended parameter space. In the case of the estimation of the truncation point T we show that the asymptotic distribution of the MLE is not centered at T. A modified MLE is introduced which outperforms all other considered estimators including the minimum variance unbiased estimator. Asymptotic as well as small sample properties of different estimators are investigated and compared. The truncated exponential distribution has an increasing failure rate, ideally suited for use as a survival distribution for biological and industrial data.  相似文献   

13.
We develop a saddlepoint-based method for generating small sample confidence bands for the population surviival function from the Kaplan-Meier (KM), the product limit (PL), and Abdushukurov-Cheng-Lin (ACL) survival function estimators, under the proportional hazards model. In the process we derive the exact distribution of these estimators and developed mid-ppopulation tolerance bands for said estimators. Our saddlepoint method depends upon the Mellin transform of the zero-truncated survival estimator which we derive for the KM, PL, and ACL estimators. These transforms are inverted via saddlepoint approximations to yield highly accurate approximations to the cumulative distribution functions of the respective cumulative hazard function estimators and these distribution functions are then inverted to produce our saddlepoint confidence bands. For the KM, PL and ACL estimators we compare our saddlepoint confidence bands with those obtained from competing large sample methods as well as those obtained from the exact distribution. In our simulation studies we found that the saddlepoint confidence bands are very close to the confidence bands derived from the exact distribution, while being much easier to compute, and outperform the competing large sample methods in terms of coverage probability.  相似文献   

14.
The expected inactivity time (EIT) function (also known as the mean past lifetime function) is a well known reliability function which has application in many disciplines such as survival analysis, actuarial studies and forensic science, to name but a few. In this paper, we use a fixed design local polynomial fitting technique to obtain estimators for the EIT function when the lifetime random variable has an unknown distribution. It will be shown that the proposed estimators are asymptotically unbiased, consistent and also, when standardized, has an asymptotic normal distribution. An optimal bandwidth, which minimizes the AMISE (asymptotic mean integrated squared error) of the estimator, is derived. Numerical examples based on simulated samples from various lifetime distributions common in reliability studies will be presented to evaluate the performances of these estimators. Finally, three real life applications will also be presented to further illustrate the wide applicability of these estimators.  相似文献   

15.
Estimation of the scale parameter in mixture models with unknown location is considered under Stein's loss. Under certain conditions, the inadmissibility of the “usual” estimator is established by exhibiting better estimators. In addition, robust improvements are found for a specified submodel of the original model. The results are applied to mixtures of normal distributions and mixtures of exponential distributions. Improved estimators of the variance of a normal distribution are shown to be robust under any scale mixture of normals having variance greater than the variance of that normal distribution. In particular, Stein's (Ann. Inst. Statist. Math. 16 (1964) 155) and Brewster's and Zidek's (Ann. Statist. 2 (1974) 21) estimators obtained under the normal model are robust under the t model, for arbitrary degrees of freedom, and under the double-exponential model. Improved estimators for the variance of a t distribution with unknown and arbitrary degrees of freedom are also given. In addition, improved estimators for the scale parameter of the multivariate Lomax distribution (which arises as a certain mixture of exponential distributions) are derived and the robustness of Zidek's (Ann. Statist. 1 (1973) 264) and Brewster's (Ann. Statist. 2 (1974) 553) estimators of the scale parameter of an exponential distribution is established under a class of modified Lomax distributions.  相似文献   

16.
Statistical inferences for the geometric process (GP) are derived when the distribution of the first occurrence time is assumed to be inverse Gaussian (IG). An α-series process, as a possible alternative to the GP, is introduced since the GP is sometimes inappropriate to apply some reliability and scheduling problems. In this study, statistical inference problem for the α-series process is considered where the distribution of first occurrence time is IG. The estimators of the parameters α, μ, and σ2 are obtained by using the maximum likelihood (ML) method. Asymptotic distributions and consistency properties of the ML estimators are derived. In order to compare the efficiencies of the ML estimators with the widely used nonparametric modified moment (MM) estimators, Monte Carlo simulations are performed. The results showed that the ML estimators are more efficient than the MM estimators. Moreover, two real life datasets are given for application purposes.  相似文献   

17.
Abstract

In this work, we introduce a new skewed slash distribution. This modification of the skew-slash distribution is obtained by the quotient of two independent random variables. That quotient consists on a skew-normal distribution divided by a power of an exponential distribution with scale parameter equal to two. In this way, the new skew distribution has a heavier tail than that of the skew-slash distribution. We give the probability density function expressed by an integral, but we obtain some important properties useful for making inferences, such as moment estimators and maximum likelihood estimators. By way of illustration and by using real data, we provide maximum likelihood estimates for the parameters of the modified skew-slash and the skew-slash distributions. Finally, we introduce a multivariate version of this new distribution.  相似文献   

18.
In this paper we propose a new robust estimator in the context of two-stage estimation methods directed towards the correction of endogeneity problems in linear models. Our estimator is a combination of Huber estimators for each of the two stages, with scale corrections implemented using preliminary median absolute deviation estimators. In this way we obtain a two-stage estimation procedure that is an interesting compromise between concerns of simplicity of calculation, robustness and efficiency. This method compares well with other possible estimators such as two-stage least-squares (2SLS) and two-stage least-absolute-deviations (2SLAD), asymptotically and in finite samples. It is notably interesting to deal with contamination affecting more heavily the distribution tails than a few outliers and not losing as much efficiency as other popular estimators in that case, e.g. under normality. An additional originality resides in the fact that we deal with random regressors and asymmetric errors, which is not often the case in the literature on robust estimators.  相似文献   

19.
To model growth curves in survival analysis and biological studies the logistic distribution has been widely used. In this article, we propose a goodness-of-fit test for the logistic distribution based on an estimate of the Gini index. The exact distribution of the proposed test statistic and also its asymptotic distribution are presented. In order to compute the proposed test statistic, parameters of the logistic distribution are estimated by approximate maximum likelihood estimators (AMLEs), which are simple explicit estimators. Through Monte Carlo simulations, power comparisons of the proposed test with some known competing tests are carried. Finally, an illustrative example is presented and analyzed.  相似文献   

20.
This article develops an algorithm for estimating parameters of general phase-type (PH) distribution based on Bayes estimation. The idea of Bayes estimation is to regard parameters as random variables, and the posterior distribution of parameters which is updated by the likelihood function provides estimators of parameters. One of the advantages of Bayes estimation is to evaluate uncertainty of estimators. In this article, we propose a fast algorithm for computing posterior distributions approximately, based on variational approximation. We formulate the optimal variational posterior distributions for PH distributions and develop the efficient computation algorithm for the optimal variational posterior distributions of discrete and continuous PH distributions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号