首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
本文讨论波发夫方程P(x,y,z)dx+Q(x,y,z)dy+R(x,y,z)dz=0(l)的积分因子,其中P(x,y,z)、Q(x,y,z)、R(x,y,z)均具有一阶连续偏导数,指出它具有某些积分因子的充要条件.我们的主要结果是给出积分因子的一般表达式,从而给出了波发夫方程的分组解法。  相似文献   

2.
在《数学通讯》1 988年第 7期的问题征解中 ,曾给出了这样的一个不等式命题 :设x,y,z R ,且x +y+z=0求证 :6(x3 +y3 +z3 ) 2 ≤ (x2 +y2 +z2 ) 3 ( 1 )一般情况 ,有如下的情况 ,即定理 1 设x ,y ,z,e ,r且x +y+z=0则λ(x2R + 1+y2R + 1+z2R + 1) 2n ≤ (x2n +y2n +z2n) 2R + 1( 2 )基中nrεN ,λ =( 1 + 2 - 2n + 1 ) 2R + 1( 1 - 2 -2K) 2n 。这是四川邓寿才老师在文中对 ( 1 )式所作的指数上的推广 ,并用求导的方法证明了 ( 2 )式。本文将用一个初等且比较简明的方法来证明条理 1 ,并将原不等式问题做进一步的推广。一、不等式推广…  相似文献   

3.
求函数的极值,有很广泛的应用,其中有一类极值问题,函数的自变量受到若干条件的约束:即所谓的“条件极值”问题。例如,求点P(0,1,3)到球面G(x,y,z)=x~2+(y-4)~2+(z+1)~2-9=0的最短与最长距离,即是求三元函数F(x,y,z)=x~2+(y-1)~2+(z-3)~2在条件G(x,y,z)=0的约束下的最小值与最大值。由初等几何可知:在直线PA与球面G(x,y,z)=0的交点B、C处,即有极值(见图①)。且最小值|PB|=|PA|-3=5  相似文献   

4.
设有方程组 (we)厂会十PY十Qz=X飞会一‘+Q’‘“X‘(1)其中P、P;、Q、Q,、X、X,都是x的连续函数。 为了解方程组(1),我们用未知函数e二0(x)乘第二个方程,然后将两个方程相加,得到奥十。奥、(P+P,。)Y十(Q十Q:。)Z=x十xl。UX OX(2·)引入辅助未知函数y+02==t(3)并消去方程(:)中的y和李,注意到y=:一。:,奥十。李二一奥一z史 U工U盖U蕊U蕊U盖我们得到dt do.,n .n。、,。_、.,。.八八、,,。〕于一z万es丁一+灭r十rlU)气t一U‘)+气议+议zU少Z=人+AIUUX UX(4)为了消去z,我们令z的系数等于。,于是有器+(p+P:。)卜Q一Q:。二。器+(…  相似文献   

5.
在解析几何中,有时会遇到对称轴不平行坐标轴的二次曲线,如何由这种二次曲线的位置情况求其方程呢?用坐标轴旋转变换去求,这样解题过程将显得较长,以下介绍一种快速求法。为此,先对二次曲线的标准方程作出几何解释:(1)ax22+by22b2x2+a2y2=a2b2这是长轴在x轴上短轴在y轴上的椭圆方程。而x2=|x|2,表示椭圆上任意一点P(x,y)到短轴距离的平方;y2=|y|2表示椭圆上任意一点P(x,y)到长轴距离的平方。由此知,椭圆具有如下属性:椭圆上任意一点P到短轴距离与短半轴的积,以及P到长轴距离与长半轴的积,两者平方和等于长半轴与短半轴之积的平方。(2)同样…  相似文献   

6.
本文把一元函数f:R~1→R~1的微分中值定理推广到二元函数f:R~2→R~1上,下面是二元函数z=f(x,y)的微分中值定理。 定理 设函数z=f(x,y)在区域D上连续,在D内关于x和y的两个偏导数连续,且算子1×2矩阵的范,则对D内任意两点(x_1,y_1)、(x_2,y_2)有  相似文献   

7.
设y=f(x)是定义在[α∞]上的一个连续函数,若曲线y=f(x)有不垂直于x轴的渐近线y=kx+b,则 反之,如果这两个极限都存在,则显然y=kx+b就是该曲线的渐近线。这是一般数学分析课本给出的方法。这个方法使用起来方便,证明过程也很简单。但笔者见到的所有课本,都是在讲导数的应用时提出该方法的,可惜这里却没有用上导致。我们曾用导数来确定函数的单调性,增减性、凹凸区间,却没有用之来确定渐近线。好象在确定渐近线时导数无能为  相似文献   

8.
引言给定方程y″ (a_0 a_1/x)y′ (b_0 b_1/x)y=0或xy″ (a_0x a_1)y′ (b_0x b_1)y=0 (1)若 a_1=b_1=0 则(1)变为常系数二阶线性方程,故可用欧拉方法解之。若 a_1,b_1,不皆为零,则欧拉方法不适用,而需用拉普拉斯变换。所谓拉普拉斯变换,就是这样的一个积分:y(x)=(?)e~(xz)U(z)dz (2)其中 U(z)是待定的复变函数,L 是在 z 平面上与 x 无关的待定路线。我们的目的,在于适当的规定 U(z)和 L,使得 y(x)为(1)的一个不恒等于零的解。为此,我们先作一些形式的处理。  相似文献   

9.
多元复合函数求导是多元函数微分学的教学重点之一,又是教学的一个难点,本文就这部分内容的教学谈点粗浅体会。 利用图形、记忆法则 多元复合函数求导法则: 若函数u=φ(x,y),v=ψ(x,y)在点(x,y)有偏导数,函数z=f(x,y)在对应点(u,v)有连续偏导数,则复合函数z=f[φ(x,y),ψ(x,y)]在点(x,y)有对x及y的偏导数,且计算公式:  相似文献   

10.
对给定的正整数 a,b,我们证明了方程 a~x+b~y=2~x 除开3~x+5~y=Z~z 仅有正整数解(x、y,z)=(1,1,3) ,(3,1,6) ,(1. 3,7) 和3~x+13~y=2~z仅有正整数解(x,y,z)=(1,1,4) ,(5,1,8) 外,最多只有一组正整数解.从而更正了 Vchiyama 获得的3~x+13~z=2~y 的结果。  相似文献   

11.
角终边上任意一点P(异于原点)的坐标是(x,y)它与原点的距离是(=√x~2+y~2>0),那么角的正弦、余弦、正切分别是sin=y/r,cos=x/r,tg=y/x,在以角的顶点为原点,以角的始边为x轴的正半轴建立的笛卡尔直角坐标系下。下文均在此约定下讨论,如图1。  相似文献   

12.
本文介绍一种想法直观、演算简便、易于掌握的解法一一坐标转换法 ,以供参考。基本思想 :直接设弦的中点坐标为P (x ,y) ,将中点坐标 (x ,y)转移到已知圆锥曲线上去考虑。基本方法 :引进两个参数t、u ,设弦的两个端点坐标分别为P1(x +t,y +u) ,P2 (x-t,y -u)。这样P (x ,y)作为P1P2 的中点就自然而然地体现出来了 ,同时也将中点坐标(x ,y)转移到圆锥曲线上去了 ,将P1、P2 的坐标代入已知的曲线方程 ,得到t,u与x ,y的关系 ,再根据弦的已知性质 ,消去t,u后就得到弦P1P2 的中点P (x ,y)的轨迹方程。优点与使用范围 :由于P1、P2 的坐标的…  相似文献   

13.
定理1:若二次函数y=ax~2+bx+c[a≠0]图象与x轴的两个交点在坐标原点的同侧,则必有对应的二次方程ax~2+bx+c=0[a≠0]的{△>0 (x_1x_1)>0}(x_1,x_2 为方程ax~2+bx+c=0[a≠0]的两根)。反之亦然。 证明:∵ 二次函数的y=ax~2+bx+c[a≠0]的图象与x轴有两个交点 ∴ ax~2+bx+c=0有两个不等的实根  相似文献   

14.
形如dy/dx=P(x)y+Q(x)y~n的方程称为Bernoulli方程,其中P(x),Q(x)是连续函数,(n≠0,1)。本文给出Bernoulli方程的又一解法及两点结论。 我们知道Bernolli方程的一般解法是n—解法即令Z=y~(1-n),将方程化为一阶线性微分方  相似文献   

15.
可以解释为,同一点M在旧坐标系xoy中的坐标(x,y)和它在新坐标系x_1o_1y_1中的坐标(x_1,y_1)之间的联系。其中a,b是新坐标系原点o_1在旧坐标系中的坐标,而θ新坐标轴o_1x_1由ox方向开始的转动角。这时,由于新旧坐标系是相对固定的,所以a,b,θ皆为常数。 如果我们只考虑一个固定的点M,则公式(1)给出的是两组定数(x_1,y_1)和(x,y)之间的关系。如果把点M看做是某曲线上的任意点,则公式(1)(或其反变换)给出了一条曲线在两个坐标系中的方程之间变形公式。  相似文献   

16.
我们知道,函数y=f(x)在点x处的导数f'(x)表示曲线y=f(x)在点p(x,y)处的切线的斜率。掌握了这一概念,对于求曲线在茶点处的切线的方程将带来很大的方便。但是,我们讲导数的几何意义时,应着重强调“在点x处”(即点(x,y)在曲线y=f(x)上),这是它的前提,应让学生全面了解、掌握这一概念,否则学生对这一概念的认识只是表面的,而不能从本质上理解它。我在讲完这节后,有意安排了下面这道题,结果发现了以下错解:题:过点M(1,2)作抛物线y二Zx-x’的切线求切线方程:解:(错解)·y“ZxXZ’.y’=22X.”.k、y…  相似文献   

17.
<正> 在讨论解析函数时,需要把一个用实变量 x,y 表示的复函数化为用单复变量 z 表示的复函数。例如已知函数U(x,y)+iV(x,y)=e~xcosy+X~3-3xy~2+i(e~xsiny+3x~2y-y~3)因为 U_x=e~xcosy+3x~2-3y~2=V_yU=-e~xsiny-6xy=-V_x在 Z 平面上,C-R 条件处处满足。所以所给函数在 Z 平面上解析。现在把它化为变量 Z 的函数。e~xcosy+X~3-3xy~2+i(e~xsiny+3x~2y-y~3)=e~x(Cosy+isiny)+(X~3+3x~2yi-3xy~2-y~3i)=e~x·e~(iy)+(x+iy)~3=e~z+Z~3在化简此类式子时,究竟那几项结合才能顺利地进行下去,这是不易一眼看出的。  相似文献   

18.
一般来说,在直角坐标系中,两个变量x、y的多项式方程f(x,y)=0确定平面上一条(实)曲线,而不在曲线f(x,y)=0上的所有点由曲线划分成有限多个区域(连通开集)D_1、D_2、……D_n。在每个区域D_i内,多项式f(x,y)或者恒为正的,或者恒为负的。因此,对于给定区域内判断f(x,y)>0,或者f(x,y)<0,只须在该区域内任取一点计算其对应的值就完全可以了。  相似文献   

19.
(一)点斜式直线参数方程的标准式 若直线l过点P_0(x_0,y_0),直线的倾斜角为α,则直线l的参数方程为: x=x_0 t·cosa y=y_0 t·sina (t为参数) ①这个方程称为直线点斜式参数方程的标准式,其中P(x,y)为直线l上任意一点,而参数t的系数的平方和为1。 参数方程中每个量的几何意义:  相似文献   

20.
文献〔1〕,中学数学问题栏中第1题:设x,y,z都是正数,求证:x/(y z)~(1/2) y/(z x)~(1/2) z/(x y)~(1/2)≥(3/2)~(1/2)(x y z)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号