首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

In this paper, we assume that the lifetimes have a two-parameter Pareto distribution and discuss some results of progressive Type-II censored sample. We obtain maximum likelihood estimators and Bayes estimators of the unknown parameters under squared error loss and a precautionary loss functions in progressively Type-II censored sample. Robust Bayes estimation of unknown parameters over three different classes of priors under progressively Type-II censored sample, squared error loss, and precautionary loss functions are obtained. We discuss estimation of unknown parameters on competing risks progressive Type-II censoring. Finally, we consider the problem of estimating the common scale parameter of two Pareto distributions when samples are progressively Type-II censored.  相似文献   

2.
In this paper, we consider paired survival data, in which pair members are subject to the same right censoring time, but they are dependent on each other. Assuming the Marshall–Olkin Multivariate Weibull distribution for the joint distribution of the lifetimes (X1, X2) and the censoring time X3, we derive the joint density of the actual observed data and obtain maximum likelihood estimators, Bayes estimators and posterior regret Gamma minimax estimators of the unknown parameters under squared error loss and weighted squared error loss functions. We compare the performances of the maximum likelihood estimators and Bayes estimators numerically in terms of biases and estimated Mean Squared Error Loss.  相似文献   

3.
In this paper, we consider the problem of making statistical inference for a truncated normal distribution under progressive type I interval censoring. We obtain maximum likelihood estimators of unknown parameters using the expectation-maximization algorithm and in sequel, we also compute corresponding midpoint estimates of parameters. Estimation based on the probability plot method is also considered. Asymptotic confidence intervals of unknown parameters are constructed based on the observed Fisher information matrix. We obtain Bayes estimators of parameters with respect to informative and non-informative prior distributions under squared error and linex loss functions. We compute these estimates using the importance sampling procedure. The highest posterior density intervals of unknown parameters are constructed as well. We present a Monte Carlo simulation study to compare the performance of proposed point and interval estimators. Analysis of a real data set is also performed for illustration purposes. Finally, inspection times and optimal censoring plans based on the expected Fisher information matrix are discussed.  相似文献   

4.
Discrete lifetime data are very common in engineering and medical researches. In many cases the lifetime is censored at a random or predetermined time and we do not know the complete survival time. There are many situations that the lifetime variable could be dependent on the time of censoring. In this paper we propose the dependent right censoring scheme in discrete setup when the lifetime and censoring variables have a bivariate geometric distribution. We obtain the maximum likelihood estimators of the unknown parameters with their risks in closed forms. The Bayes estimators as well as the constrained Bayes estimates of the unknown parameters under the squared error loss function are also obtained. We considered an extension to the case where covariates are present along with the data. Finally we provided a simulation study and an illustrative example with a real data.  相似文献   

5.
We consider estimation of unknown parameters and reliability characteristics of a Burr type-III distribution under progressive censoring. Predictive estimates for censored observations and the associated prediction intervals are also obtained. We derive maximum-likelihood estimators of unknown quantities using the EM algorithm and then also obtain the observed Fisher information matrix. We provide various Bayes estimators for unknown parameters under the squared error loss function. Highest posterior density and asymptotic intervals are also constructed. We evaluate performance of proposed methods using simulations. Finally, an illustrative example is presented in support of the methods discussed.  相似文献   

6.
For the hierarchical Poisson and gamma model, we calculate the Bayes posterior estimator of the parameter of the Poisson distribution under Stein's loss function which penalizes gross overestimation and gross underestimation equally and the corresponding Posterior Expected Stein's Loss (PESL). We also obtain the Bayes posterior estimator of the parameter under the squared error loss and the corresponding PESL. Moreover, we obtain the empirical Bayes estimators of the parameter of the Poisson distribution with a conjugate gamma prior by two methods. In numerical simulations, we have illustrated: The two inequalities of the Bayes posterior estimators and the PESLs; the moment estimators and the Maximum Likelihood Estimators (MLEs) are consistent estimators of the hyperparameters; the goodness-of-fit of the model to the simulated data. The numerical results indicate that the MLEs are better than the moment estimators when estimating the hyperparameters. Finally, we exploit the attendance data on 314 high school juniors from two urban high schools to illustrate our theoretical studies.  相似文献   

7.
In this paper, the statistical inference of the unknown parameters of a two-parameter inverse Weibull (IW) distribution based on the progressive type-II censored sample has been considered. The maximum likelihood estimators (MLEs) cannot be obtained in explicit forms, hence the approximate MLEs are proposed, which are in explicit forms. The Bayes and generalized Bayes estimators for the IW parameters and the reliability function based on the squared error and Linex loss functions are provided. The Bayes and generalized Bayes estimators cannot be obtained explicitly, hence Lindley's approximation is used to obtain the Bayes and generalized Bayes estimators. Furthermore, the highest posterior density credible intervals of the unknown parameters based on Gibbs sampling technique are computed, and using an optimality criterion the optimal censoring scheme has been suggested. Simulation experiments are performed to see the effectiveness of the different estimators. Finally, two data sets have been analysed for illustrative purposes.  相似文献   

8.
The present article obtains the point estimators of the exponentiated-Weibull parameters when all the three parameters of the distribution are unknown. Maximum likelihood estimator generalized maximum likelihood estimator and Bayes estimators are proposed for three-parameter exponentiated-Weibull distribution when available sample is type-II censored. Independent non-informative types of priors are considered for the unknown parameters to develop generalized maximum likelihood estimator and Bayes estimators. Although the proposed estimators cannot be expressed in nice closed forms, these can be easily obtained through the use of appropriate numerical techniques. The performances of these estimators are studied on the basis of their risks, computed separately under LINEX loss and squared error loss functions through Monte-Carlo simulation technique. An example is also considered to illustrate the estimators.  相似文献   

9.
Bayes and classical estimators have been obtained for a two-parameter exponentiated Pareto distribution for when samples are available from complete, type I and type II censoring schemes. Bayes estimators have been developed under a squared error loss function as well as under a LINEX loss function using priors of non-informative type for the parameters. It has been seen that the estimators obtained are not available in nice closed forms, although they can be easily evaluated for a given sample by using suitable numerical methods. The performances of the proposed estimators have been compared on the basis of their simulated risks obtained under squared error as well as under LINEX loss functions.  相似文献   

10.
The four-parameter Exponentiated Modified Weibull (EMW) is considered as an important lifetime distribution. Based on progressive Type-II censored sample, maximum likelihood and Bayesian estimators of the parameters, reliability function, and hazard rate function are derived. Two cases are considered: first, the case of one unknown exponent parameter of EMW and second, the case when two parameters of the EMW are both unknown. The Bayes estimators are studied under squared error and LINEX loss functions. The standard Bayes and importance sampling are considered for the estimation. Monte Carlo simulations are performed under different samples sizes and different censoring schemes for investigating and comparing the methods of estimation.  相似文献   

11.
In this paper, we consider estimation of unknown parameters of an inverted exponentiated Rayleigh distribution under type II progressive censored samples. Estimation of reliability and hazard functions is also considered. Maximum likelihood estimators are obtained using the Expectation–Maximization (EM) algorithm. Further, we obtain expected Fisher information matrix using the missing value principle. Bayes estimators are derived under squared error and linex loss functions. We have used Lindley, and Tiernery and Kadane methods to compute these estimates. In addition, Bayes estimators are computed using importance sampling scheme as well. Samples generated from this scheme are further utilized for constructing highest posterior density intervals for unknown parameters. For comparison purposes asymptotic intervals are also obtained. A numerical comparison is made between proposed estimators using simulations and observations are given. A real-life data set is analyzed for illustrative purposes.  相似文献   

12.
This article deals with progressive first-failure censoring, which is a generalization of progressive censoring. We derive maximum likelihood estimators of the unknown parameters and reliability characteristics of generalized inverted exponential distribution using progressive first-failure censored samples. The asymptotic confidence intervals and coverage probabilities for the parameters are obtained based on the observed Fisher's information matrix. Bayes estimators of the parameters and reliability characteristics under squared error loss function are obtained using the Lindley approximation and importance sampling methods. Also, highest posterior density credible intervals for the parameters are computed using importance sampling procedure. A Monte Carlo simulation study is conducted to analyse the performance of the estimators derived in the article. A real data set is discussed for illustration purposes. Finally, an optimal censoring scheme has been suggested using different optimality criteria.  相似文献   

13.
ABSTRACT

In this paper, we derive the Bayes estimators of functions of parameters of the size-biased generalized power series distribution under squared error loss function and weighted square error loss function. The results of size-biased GPSD are then used to obtain particular cases of the size-biased negative binomial, size-biased logarithmic series, and size-biased Poisson distributions. These estimators are better than the classical minimum variance unbiased estimators in the sense that they increase the range of the estimation. Finally, an example is provided to illustrate the results and a goodness of fit test is done using the maximum likelihood and Bayes estimators.  相似文献   

14.
In this article, we consider the Bayes and empirical Bayes problem of the current population mean of a finite population when the sample data is available from other similar (m-1) finite populations. We investigate a general class of linear estimators and obtain the optimal linear Bayes estimator of the finite population mean under a squared error loss function that considered the cost of sampling. The optimal linear Bayes estimator and the sample size are obtained as a function of the parameters of the prior distribution. The corresponding empirical Bayes estimates are obtained by replacing the unknown hyperparameters with their respective consistent estimates. A Monte Carlo study is conducted to evaluate the performance of the proposed empirical Bayes procedure.  相似文献   

15.
The mean vector associated with several independent variates from the exponential subclass of Hudson (1978) is estimated under weighted squared error loss. In particular, the formal Bayes and “Stein-like” estimators of the mean vector are given. Conditions are also given under which these estimators dominate any of the “natural estimators”. Our conditions for dominance are motivated by a result of Stein (1981), who treated the Np (θ, I) case with p ≥ 3. Stein showed that formal Bayes estimators dominate the usual estimator if the marginal density of the data is superharmonic. Our present exponential class generalization entails an elliptic differential inequality in some natural variables. Actually, we assume that each component of the data vector has a probability density function which satisfies a certain differential equation. While the densities of Hudson (1978) are particular solutions of this equation, other solutions are not of the exponential class if certain parameters are unknown. Our approach allows for the possibility of extending the parametric Stein-theory to useful nonexponential cases, but the problem of nuisance parameters is not treated here.  相似文献   

16.
The hybrid censoring scheme is a mixture of Type-I and Type-II censoring schemes. Based on hybrid censored samples, we first derive the maximum likelihood estimators of the unknown parameters and the expected Fisher’s information matrix of the generalized inverted exponential distribution (GIED). Monte Carlo simulations are performed to study the performance of the maximum likelihood estimators. Next we consider Bayes estimation under the squared error loss function. These Bayes estimates are evaluated by applying Lindley’s approximation method, the importance sampling procedure and Metropolis–Hastings algorithm. The importance sampling technique is used to compute the highest posterior density credible intervals. Two data sets are analyzed for illustrative purposes. Finally, we discuss a method of obtaining the optimum hybrid censoring scheme.  相似文献   

17.
In this paper we consider the discrete middle censoring where lifetime, lower bound and length of censoring interval are variables with geometric distribution. We obtain the likelihood function of observed data and derive the MLE of the unknown parameter using EM algorithm. Also we obtain the Bayes estimator of the unknown parameter under squared error loss (SEL) function and credible interval of unknown parameter using Monte Carlo methods.  相似文献   

18.
In this paper, we consider some problems of estimation and reconstruction based on middle censored competing risks data. It is assumed that the lifetime distributions of the latent failure times are independent and exponential distributed with different parameters and also that the censoring mechanism is independent. The maximum likelihood estimators (MLEs) of the unknown parameters are obtained. We then use the asymptotic distribution of the MLEs to construct approximate confidence intervals. Based on gamma priors, Lindley's approximation method is applied to obtain the Bayesian estimates of the unknown parameters under squared error loss function. Since it is not possible to construct the credible intervals, we propose and implement the Gibbs sampling technique to construct the credible intervals. Several point reconstructors for failure time of censored units are provided. Finally, a simulation study is given by Monte-Carlo simulations to evaluate the performances of the different methods and a data set is analysed to illustrate the proposed procedures.  相似文献   

19.
The bathtub-shaped failure rate function has been used for modeling the life spans of a number of electronic and mechanical products, as well as for modeling the life spans of humans, especially when some of the data are censored. This article addresses robust methods for the estimation of unknown parameters in a two-parameter distribution with a bathtub-shaped failure rate function based on progressive Type-II censored samples. Here, a class of flexible priors is considered by using the hierarchical structure of a conjugate prior distribution, and corresponding posterior distributions are obtained in a closed-form. Then, based on the square error loss function, Bayes estimators of unknown parameters are derived, which depend on hyperparameters as parameters of the conjugate prior. In order to eliminate the hyperparameters, hierarchical Bayesian estimation methods are proposed, and these proposed estimators are compared to one another based on the mean squared error, through Monte Carlo simulations for various progressively Type-II censoring schemes. Finally, a real dataset is presented for the purpose of illustration.  相似文献   

20.
ABSTRACT

The paper deals with Bayes estimation of the exponentiated Weibull shape parameters under linex loss function when independent non-informative type of priors are available for the parameters. Generalized maximum likelihood estimators have also been obtained. Performances of the proposed Bayes estimator, generalized maximum likelihood estimators, posterior mean (i.e., Bayes estimator under squared error loss function) and maximum likelihood estimators have been studied on the basis of their risks under linex loss function. The comparison is based on a simulation study because the expressions for risk functions of these estimators cannot be obtained in nice closed forms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号