首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
In many applications (geosciences, insurance, etc.), the peaks-over-thresholds (POT) approach is one of the most widely used methodology for extreme quantile inference. It mainly consists of approximating the distribution of exceedances above a high threshold by a generalized Pareto distribution (GPD). The number of exceedances which is used in the POT inference is often quite small and this leads typically to a high volatility of the estimates. Inspired by perfect sampling techniques used in simulation studies, we define a folding procedure that connects the lower and upper parts of a distribution. A new extreme quantile estimator motivated by this theoretical folding scheme is proposed and studied. Although the asymptotic behaviour of our new estimate is the same as the classical (non-folded) one, our folding procedure reduces significantly the mean squared error of the extreme quantile estimates for small and moderate samples. This is illustrated in the simulation study. We also apply our method to an insurance dataset.  相似文献   

2.
On Smooth Statistical Tail Functionals   总被引:4,自引:0,他引:4  
Many estimators of the extreme value index of a distribution function F that are based on a certain number k n of largest order statistics can be represented as a statistical tail function al, that is a functional T applied to the empirical tail quantile function Q n. We study the asymptotic behaviour of such estimators with a scale and location invariant functional T under weak second order conditions on F . For that purpose first a new approximation of the empirical tail quantile function is established. As a consequence we obtain weak consistency and asymptotic normality of T ( Q n) if T is continuous and Hadamard differentiable, respectively, at the upper quantile function of a generalized Pareto distribution and k pn tends to infinity sufficiently slowly. Then we investigate the asymptotic variance and bias. In particular, those functionals T re characterized that lead to an estimator with minimal asymptotic variance. Finally, we introduce a method to construct estimators of the extreme value index with a made-to-order asymptotic behaviour  相似文献   

3.
The POT (peaks-over-threshold) approach consists in using the generalized Pareto distribution (GPD) to approximate the distribution of excesses over a threshold. In this paper, we consider this approximation using a generalized probability-weighted moments (GPWM) method. We study the asymptotic behaviour of our new estimators and also the functional bias of the GPD as an estimate of the distribution function of the excesses. A simulation study is provided in order to appreciate the efficiency of our approach.  相似文献   

4.
It is well-known that maximum likelihood (ML) estimators of the two parameters in a gamma distribution do not have closed forms. This poses difficulties in some applications such as real-time signal processing using low-grade processors. The gamma distribution is a special case of a generalized gamma distribution. Surprisingly, two out of the three likelihood equations of the generalized gamma distribution can be used as estimating equations for the gamma distribution, based on which simple closed-form estimators for the two gamma parameters are available. Intuitively, performance of the new estimators based on likelihood equations should be close to the ML estimators. The study consolidates this conjecture by establishing the asymptotic behaviors of the new estimators. In addition, the closed-forms enable bias-corrections to these estimators. The bias-correction significantly improves the small-sample performance.  相似文献   

5.
In this paper, we consider the problem of estimating an extreme quantile of a Weibull tail-distribution. The new extreme quantile estimator has a reduced bias compared to the more classical ones proposed in the literature. It is based on an exponential regression model that was introduced in Diebolt et al. [2007. Bias-reduced estimators of the Weibull-tail coefficient. Test, to appear]. The asymptotic normality of the extreme quantile estimator is established. We also introduce an adaptive selection procedure to determine the number of upper order statistics to be used. A simulation study as well as an application to a real data set is provided in order to prove the efficiency of the above-mentioned methods.  相似文献   

6.
ABSTRACT

When a distribution function is in the max domain of attraction of an extreme value distribution, its tail can be well approximated by a generalized Pareto distribution. Based on this fact we use a moment estimation idea to propose an adapted maximum likelihood estimator for the extreme value index, which can be understood as a combination of the maximum likelihood estimation and moment estimation. Under certain regularity conditions, we derive the asymptotic normality of the new estimator and investigate its finite sample behavior by comparing with several classical or competitive estimators. A simulation study shows that the new estimator is competitive with other estimators in view of average bias, average MSE, and coefficient of variance of the new device for the optimal selection of the threshold.  相似文献   

7.
The paper presents the essentials of the SURE model and the estimation of its parameters β and ω. Two alternative compact representations of the model are being used. The parameter β is estimated by least squares (LS), generalized least squares (GLS) and maximum likelihood (ML) (under normality). For ω two estimators are being considered, viz an LS-related estimator and a maximum likelihood estimator (under normality). Attention is being given to the study of asymptotic properties of all estimators examined. It turns out that the LS-related and ML estimators of ω follow the same asymptotic (normal) distribution. Efficiency comparisons for the various estimators of β conclude the paper.  相似文献   

8.
Least-squares and quantile regressions are method of moments techniques that are typically used in isolation. A leading example where efficiency may be gained by combining least-squares and quantile regressions is one where some information on the error quantiles is available but the error distribution cannot be fully specified. This estimation problem may be cast in terms of solving an over-determined estimating equation (EE) system for which the generalized method of moments (GMM) and empirical likelihood (EL) are approaches of recognized importance. The major difficulty with implementing these techniques here is that the EEs associated with the quantiles are non-differentiable. In this paper, we develop a kernel-based smoothing technique for non-smooth EEs, and derive the asymptotic properties of the GMM and maximum smoothed EL (MSEL) estimators based on the smoothed EEs. Via a simulation study, we investigate the finite sample properties of the GMM and MSEL estimators that combine least-squares and quantile moment relationships. Applications to real datasets are also considered.  相似文献   

9.
In this paper, we present the asymptotic properties of maximum quasi-likelihood estimators (MQLEs) in generalized linear models with adaptive designs under some mild regular conditions. The existence of MQLEs in quasi-likelihood equation is discussed. The rate of convergence and asymptotic normality of MQLEs are also established. The results are illustrated by Monte-Carlo simulations.  相似文献   

10.
It is shown in this paper that the parameters of a multinomial distribution may be re-parameterized as a set of generalized Simpson's diversity indices. There are two important elements in the generalization: (1) Simpson's diversity index is extended to populations with infinite species; (2) weighting schemes are incorporated. A class of unbiased estimators for the generalized Simpson's biodiversity indices is proposed. Asymptotic normality is established for the estimators. Both the unbiasedness and the asymptotic normality of the estimators hold for all three cases of the number of species in the population: infinite, finite and known, and finite but unknown. In the case of a population with a finite number of species, known or unknown, it is also established that the proposed estimators are uniformly minimum variance unbiased and are asymptotically efficient.  相似文献   

11.
In this paper, we consider the problem of estimating the location and scale parameters of an extreme value distribution based on multiply Type-II censored samples. We first describe the best linear unbiased estimators and the maximum likelihood estimators of these parameters. After observing that the best linear unbiased estimators need the construction of some tables for its coefficients and that the maximum likelihood estimators do not exist in an explicit algebraic form and hence need to be found by numerical methods, we develop approximate maximum likelihood estimators by appropriately approximating the likelihood equations. In addition to being simple explicit estimators, these estimators turn out to be nearly as efficient as the best linear unbiased estimators and the maximum likelihood estimators. Next, we derive the asymptotic variances and covariance of these estimators in terms of the first two single moments and the product moments of order statistics from the standard extreme value distribution. Finally, we present an example in order to illustrate all the methods of estimation of parameters discussed in this paper.  相似文献   

12.
In this paper, we propose estimating equations estimators (EEE) based on the order statistics for the generalized Logistic distribution. Some asymptotic results are provided. Two simulation studies are undertaken to assess the performance of the proposed method and to compare them with other methods suggested in this paper. The simulation results indicate that EEE performs better than some other methods in terms of MSE. Finally, the proposed method is applied to two real data sets.  相似文献   

13.
This paper deals with the estimation of the tail index of a heavy-tailed distribution in the presence of covariates. A class of estimators is proposed in this context and its asymptotic normality established under mild regularity conditions. These estimators are functions of a kernel conditional quantile estimator depending on some tuning parameters. The finite sample properties of our estimators are illustrated on a small simulation study.  相似文献   

14.
In this article, the simple step-stress model is considered based on generalized Type-I hybrid censored data from the exponential distribution. The maximum likelihood estimators (MLEs) of the unknown parameters are derived assuming a cumulative exposure model. We then derive the exact distributions of the MLEs of the parameters using conditional moment generating functions. The Bayesian estimators of the parameters are derived and then compared with the MLEs. We also derive confidence intervals for the parameters using these exact distributions, asymptotic distributions of the MLEs, Bayesian, and the parametric bootstrap methods. The problem of determining the optimal stress-changing point is discussed and the MLEs of the pth quantile and reliability functions at the use condition are obtained. Finally, Monte Carlo simulation and some numerical results are presented for illustrating all the inferential methods developed here.  相似文献   

15.
We propose a modification of the moment estimators for the two-parameter weighted Lindley distribution. The modification replaces the second sample moment (or equivalently the sample variance) by a certain sample average which is bounded on the unit interval for all values in the sample space. In this method, the estimates always exist uniquely over the entire parameter space and have consistency and asymptotic normality over the entire parameter space. The bias and mean squared error of the estimators are also examined by means of a Monte Carlo simulation study, and the empirical results show the small-sample superiority in addition to the desirable large sample properties. Monte Carlo simulation study showed that the proposed modified moment estimators have smaller biases and smaller mean-square errors than the existing moment estimators and are compared favourably with the maximum likelihood estimators in terms of bias and mean-square error. Three illustrative examples are finally presented.  相似文献   

16.
The likelihood equations based on a progressively Type II censored sample from a Type I generalized logistic distribution do not provide explicit solutions for the location and scale parameters. We present a simple method of deriving explicit estimators by approximating the likelihood equations appropriately. We examine numerically the bias and variance of these estimators and show that these estimators are as efficient as the maximum likelihood estimators (MLEs). The probability coverages of the pivotal quantities (for location and scale parameters) based on asymptotic normality are shown to be unsatisfactory, especially when the effective sample size is small. Therefore we suggest using unconditional simulated percentage points of these pivotal quantities for the construction of confidence intervals. A wide range of sample sizes and progressive censoring schemes have been considered in this study. Finally, we present a numerical example to illustrate the methods of inference developed here.  相似文献   

17.
Sometimes, in industrial quality control experiments and destructive stress testing, only values smaller than all previous ones are observed. Here we consider nonparametric quantile estimation, both the ‘sample quantile function’ and kernel-type estimators, from such record-breaking data. For a single record-breaking sample, consistent estimation is not possible except in the extreme tails of the distribution. Hence replication is required, and for m. such independent record-breaking samples the quantile estimators are shown to be strongly consistent and asymptotically normal as m-→∞. Also, for small m, the mean-squared errors, biases and smoothing parameters (for the smoothed estimators) are investigated through computer simulations.  相似文献   

18.
Partially linear varying coefficient models (PLVCMs) with heteroscedasticity are considered in this article. Based on composite quantile regression, we develop a weighted composite quantile regression (WCQR) to estimate the non parametric varying coefficient functions and the parametric regression coefficients. The WCQR is augmented using a data-driven weighting scheme. Moreover, the asymptotic normality of proposed estimators for both the parametric and non parametric parts are studied explicitly. In addition, by comparing the asymptotic relative efficiency theoretically and numerically, WCQR method all outperforms the CQR method and some other estimate methods. To achieve sparsity with high-dimensional covariates, we develop a variable selection procedure to select significant parametric components for the PLVCM and prove the method possessing the oracle property. Both simulations and data analysis are conducted to illustrate the finite-sample performance of the proposed methods.  相似文献   

19.
In this paper, we consider the weighted composite quantile regression for linear model with left-truncated data. The adaptive penalized procedure for variable selection is proposed. The asymptotic normality and oracle property of the resulting estimators are also established. Simulation studies are conducted to illustrate the finite sample performance of the proposed methods.  相似文献   

20.
Extreme quantile estimation plays an important role in risk management and environmental statistics among other applications. A popular method is the peaks-over-threshold (POT) model that approximate the distribution of excesses over a high threshold through generalized Pareto distribution (GPD). Motivated by a practical financial risk management problem, we look for an appropriate prior choice for Bayesian estimation of the GPD parameters that results in better quantile estimation. Specifically, we propose a noninformative matching prior for the parameters of a GPD so that a specific quantile of the Bayesian predictive distribution matches the true quantile in the sense of Datta et al. (2000).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号