首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 961 毫秒
1.
There are numerous situations in categorical data analysis where one wishes to test hypotheses involving a set of linear inequality constraints placed upon the cell probabilities. For example, it may be of interest to test for symmetry in k × k contingency tables against one-sided alternatives. In this case, the null hypothesis imposes a set of linear equalities on the cell probabilities (namely pij = Pji ×i > j), whereas the alternative specifies directional inequalities. Another important application (Robertson, Wright, and Dykstra 1988) is testing for or against stochastic ordering between the marginals of a k × k contingency table when the variables are ordinal and independence holds. Here we extend existing likelihood-ratio results to cover more general situations. To be specific, we consider testing Ht,0 against H1 - H0 and H1 against H2 - H 1 when H0:k × i=1 pixji = 0, j = 1,…, s, H1:k × i=1 pixji × 0, j = 1,…, s, and does not impose any restrictions on p. The xji's are known constants, and s × k - 1. We show that the asymptotic distributions of the likelihood-ratio tests are of chi-bar-square type, and provide expressions for the weighting values.  相似文献   

2.
Let X1 X2 … XN be independent normal p-vectors with common mean vector $$ = ($$) and common nonsingular covariance matrix $$ = Diag ($sGi) [(1–p) I + pE] Diag ($sGi), $sGi> 0, i = 1… p, 1>p>=1/p–1. Write rij = sample correlation between the i th and the j th variable i j = 1,… p. It has been proved that for testing the hypothesis H0 : p = 0 against the alternative H1 : p>0 where $$ and $sG1,…, $sGp are unknown, the test which rejects H0 for large value of $$ rij is locally best invariant for every $aL: 0 > $aL > 1 and locally minimax as p $$ 0 in the sense of Giri and Kiefer, 1964, for every $aL: 0 > $aL $$ $aL0 > 1 where$aL0 = Pp=0 $$.  相似文献   

3.
Consider an ergodic Markov chain X(t) in continuous time with an infinitesimal matrix Q = (qij) defined on a finite state space {0, 1,…, N}. In this note, we prove that if X(t) is skip-free positive (negative, respectively), i.e., qij, = 0 for j > i+ 1 (i > j+ 1), then the transition probability pij(t) = Pr[X(t)=j | X(0) =i] can be represented as a linear combination of p0N(t) (p(m)(N0)(t)), 0 ≤ m ≤N, where f(m)(t) denotes the mth derivative of a function f(t) with f(0)(t) =f(t). If X(t) is a birth-death process, then pij(t) is represented as a linear combination of p0N(m)(t), 0 ≤mN - |i-j|.  相似文献   

4.
Let πi (i=1,2,…, k) be charceterized by the uniform distribution on (ai;bi), where exactly one of ai and bi is unknown. With unequal sample sizes, suppose that from the k (>=2) given populations, we wish to select a random-size subset containing the one with the smllest value of θi= bi - ai. RuleRi selects π if a likelihood-based k-dimensional confidence region for the unknown (θ1,… θk) contains at least one point having θi as its smallest component. A second rule, R , is derived through a likelihood ratio and turns out to be that of Barr and prabhu whenthe sample sizes are equal. Numerical comparisons are made. The results apply to the larger class of densities g ( z ; θi) =M(z)Q(θi) if a(θi) < z <b(θi). Extensions to the cases when both ai and bi are unknown and when θj isof interest are indicated. 1<=j<=k  相似文献   

5.
Consider the general unbalanced two-factor crossed components-of-variance model with interaction given by Yijk: = μ+Ai: +Bj: + Cij: +Eijk: (i = 1,2, … a; j = 1,…,b; k = 1,…,.nij:=0) Ai:,Bj:, Cij: and Eijk: are independent unobservable random variables. Also Ai:sim; N(0,σ2 A),Bj: ~ N(0,σ2 B), Cij:~N(0,s2 C:) and Eijk:~N(0,s2 E:). In this paper approximate confidence bounds are obtained for ρA: = ρ2 A/2 and ρB: = ρ2 B:/ρ2 (where σ2 = σ2 A:+ σ2 B2 Cσ2 E) for special cases of the above model. The balanced incomplete block model is studied as a special case.  相似文献   

6.
i , i = 1, 2, ..., k be k independent exponential populations with different unknown location parameters θ i , i = 1, 2, ..., k and common known scale parameter σ. Let Y i denote the smallest observation based on a random sample of size n from the i-th population. Suppose a subset of the given k population is selected using the subset selection procedure according to which the population π i is selected iff Y i Y (1)d, where Y (1) is the largest of the Y i 's and d is some suitable constant. The estimation of the location parameters associated with the selected populations is considered for the squared error loss. It is observed that the natural estimator dominates the unbiased estimator. It is also shown that the natural estimator itself is inadmissible and a class of improved estimators that dominate the natural estimator is obtained. The improved estimators are consistent and their risks are shown to be O(kn −2). As a special case, we obtain the coresponding results for the estimation of θ(1), the parameter associated with Y (1). Received: January 6, 1998; revised version: July 11, 2000  相似文献   

7.
Suppose particles are randomly distributed in a certain medium, powder or liquid, which is conceptually divided into N cells. Let pi denote the probability that a particle falls in the ith cell and Yi denote the number of particles in the ith cell. Assume that the joint probability function of the Yi follows a multinomial distribution with cell probabilities pi respectively. Take n (≤N) cells at random without replacement and put each of the cells separately through a mixing mechanism of dilution and swirl. These n cells constitute the first stage samples and the number of particles in these cells are not observable. Now conceptually divide each of n cells into M subcells of equal size and let Xij denote the number of particles in the jth subcell of the ith cell selected in the first stage; i=1,2,…,N and j=1,2,…,M. Consequently assume that the conditional joint probability function of the Xij given Yi=yi follows a multinomial distribution with equal cell probabilities. Now take m (≤M) subcells at random from each of the cells selected in the first stage sample. Assume that the numbers of particles in M×N subcells are observable. The properties of the estimator of the particle density per sample unit are investigated under the modified two-stage cluster sampling method. A laboratory experiment for Xanthan Gum Products is analyzed in order to examine the appropriateness of the model assumed in this paper.  相似文献   

8.
9.
The problem of estimating the effects in a balanced two-way classification with interaction \documentclass{article}\pagestyle{empty}\begin{document}$i = 1, \ldots ,I;j = 1, \ldots ,J;k = 1, \ldots ,K$\end{document} using a random effect model is considered from a Bayesian view point. Posterior distributions of ri, cj and tij are obtained under the assumptions that ri, cj, tij and eijk are all independently drawn from normal distributions with zero meansand variances \documentclass{article}\pagestyle{empty}\begin{document}$\sigma _r^2 ,\sigma _c^2 ,\sigma _t^2 ,\sigma _e^2$\end{document} respectively. A non informative reference prior is adopted for \documentclass{article}\pagestyle{empty}\begin{document}$\mu ,\sigma _r^2 ,\sigma _c^2 ,\sigma _t^2 ,\sigma _e^2$\end{document}. Various features of thisposterior distribution are obtained. The same features of the psoterior distribution for a fixed effect model are also obtained. A numerical example is given.  相似文献   

10.
Sequential estimation of parameters In a continuous time Markov branching process with Immigration with split rate λ1 Immigration rate λ2, offspring distribution {p1j≥O) and Immigration distribution {p2j≥l} is considered. A sequential version of the Cramér-Rao type information inequality is derived which gives a lower bound on the variances of unbiased estimators for any function of these parameters. Attaining the lower bounds depends on whether the sampling plan or stopping rule S, the estimator f, and the parametric function g = E(f) are efficient. All efficient triples (S,f,g) are characterized; It Is shown that for i = 1,2, only linear combinations of λipij j's or their ratios are efficiently estimable. Applications to a Yule process, a linear birth and death process with immigration and an M/M/∞ queue are also considered  相似文献   

11.
Given the regression model Yi = m(xi) +εi (xi ε C, i = l,…,n, C a compact set in R) where m is unknown and the random errors {εi} present an ARMA structure, we design a bootstrap method for testing the hypothesis that the regression function follows a general linear model: Ho : m ε {mθ(.) = At(.)θ : θ ε ? ? Rq} with A a functional from R to Rq. The criterion of the test derives from a Cramer-von-Mises type functional distance D = d2([mcirc]n, At(.)θn), between [mcirc]n, a Gasser-Miiller non-parametric estimator of m, and the member of the class defined in Ho that is closest to mn in terms of this distance. The consistency of the bootstrap distribution of D and θn is obtained under general conditions. Finally, simulations show the good behavior of the bootstrap approximation with respect to the asymptotic distribution of D = d2.  相似文献   

12.
For the balanced two-way layout of a count response variable Y classified by fixed or random factors A and B, we address the problems of (i) testing for individual and interactive effects on Y of two fixed factors, and (ii) testing for the effect of a fixed factor in the presence of a random factor and conversely. In case (i), we assume independent Poisson responses with µij= E(Y| A=i,B=j) = αiβjγij corresponding respectively to the multiplicative

interactive and non-interactive cases. For case (ii) with factor A random, we derive a multivariate gamma-Poisson model by mixing on the random variable associated with each level of A. In each case Neyman C(α) score tests are derived. We present simulation results,and apply the interaction test to a data set, to evaluate and compare the size and power of the score test for interaction between two fixed factors, the competing Poisson-based likelihood ratio test, and the F-tests based on the assumptions that √Y+1 or log(Y+1) are approximately normal. Our results provide strong evidence that the normal-theory based F-tests typically are very far from nominal size, and that the likelihood ratio test is somewhat more liberal than the score test.  相似文献   

13.
Consider the linear regression model, yi = xiβ0 + ei, i = l,…,n, and an M-estimate β of βo obtained by minimizing Σρ(yi — xiβ), where ρ is a convex function. Let Sn = ΣXiXiXi and rn = Sn½ (β — β0) — Sn 2 Σxih(ei), where, with a suitable choice of h(.), the expression Σ xix(e,) provides a linear representation of β. Bahadur (1966) obtained the order of rn as n→ ∞ when βo is a one-dimensional location parameter representing the median, and Babu (1989) proved a similar result for the general regression parameter estimated by the LAD (least absolute deviations) method. We obtain the stochastic order of rn as n → ∞ for a general M-estimate as defined above, which agrees with the results of Bahadur and Babu in the special cases considered by them.  相似文献   

14.
x 1, ..., x n+r can be treated as the sample values of a Markov chain of order r or less (chain in which the dependence extends over r+1 consecutive variables only), and consider the problem of testing the hypothesis H 0 that a chain of order r− 1 will be sufficient on the basis of the tools given by the Statistical Information Theory: ϕ-Divergences. More precisely, if p a 1 ....., a r: a r +1 denotes the transition probability for a r th order Markov chain, the hypothesis to be tested is H 0:p a 1 ....., a r: a r +1 = p a 2 ....., a r: a r +1, a i ∈{1, ..., s}, i = 1, ..., r + 1 The tests given in this paper, for the first time, will have as a particular case the likelihood ratio test and the test based on the chi-squared statistic. Received: August 3, 1998; revised version: November 25, 1999  相似文献   

15.
Let (θ1,x1),…,(θn,xn) be independent and identically distributed random vectors with E(xθ) = θ and Var(x|θ) = a + bθ + cθ2. Let ti be the linear Bayes estimator of θi and θ~i be the linear empirical Bayes estimator of θi as proposed in Robbins (1983). When Ex and Var x are unknown to the statistician. The regret of using θ~i instead of ti because of ignorance of the mean and the variance is ri = E(θi ? θi)2 ?E(tii)2. Under appropriate conditions cumulative regret Rn = r1+…rn is shown to have a finite limit even when n tends to infinity. The limit can be explicitly computed in terms of a,b,c and the first four moments of x.  相似文献   

16.
Let Π1,…,Πk be k populations with Πi being Pareto with unknown scale parameter αi and known shape parameter βi;i=1,…,k. Suppose independent random samples (Xi1,…,Xin), i=1,…,k of equal size are drawn from each of k populations and let Xi denote the smallest observation of the ith sample. The population corresponding to the largest Xi is selected. We consider the problem of estimating the scale parameter of the selected population and obtain the uniformly minimum variance unbiased estimator (UMVUE) when the shape parameters are assumed to be equal. An admissible class of linear estimators is derived. Further, a general inadmissibility result for the scale equivariant estimators is proved.  相似文献   

17.
The authors derive the null and non-null distributions of the test statistic v=ymin/ymax (where ymin= min xij, ymax= max xij, J=1,2, …, k) connected with testing the equality of scale parameters θ1, θ2, …θk in certain, class of density functions given by   相似文献   

18.
Hypercubic design was introduced by Shah (1958) and Kusumoto(1965) in which the t=vm treatments are represented by n-plets (x1, x2, ..., xm),where 1≤ x1, x2, ..., xm ≤v, and two treatments are said to be i-th associates if they differ in exactly i components. This paper deals with the construction of some hypercubic designs and gives their application to confounding plans for symmetrical factorial experiments. The proposed methods prove to be quite flexible in terms of choice of possible block sizes and are easy to use.  相似文献   

19.
Theorerms are proved for the maxima and minima of IIRi!/IICj!/T!IIyij ! over r× c contingcncy tables Y=(yij) with row sums R1,…,Rr, column sums C1,…,Cc, and grand total T. These results are imlplemented into the network algorithm of Mehta and Patel (1983) for computing the P-value of Fisher's exact test for unordered r×c contingency tables. The decrease in the amount of computing time can be substantial when the column sums are very different.  相似文献   

20.
It is assumed that k(k?>?2) independent samples of sizes n i (i?=?1, …, k) are available from k lognormal distributions. Four hypothesis cases (H 1H 4) are defined. Under H 1, all k median parameters as well as all k skewness parameters are equal; under H 2, all k skewness parameters are equal but not all k median parameters are equal; under H 3, all k median parameters are equal but not all k skewness parameters are equal; under H 4, neither the k median parameters nor the k skewness parameters are equal. The Expectation Maximization (EM) algorithm is used to obtain the maximum likelihood (ML) estimates of the lognormal parameters in each of these four hypothesis cases. A (2k???1) degree polynomial is solved at each step of the EM algorithm for the H 3 case. A two-stage procedure for testing the equality of the medians either under skewness homogeneity or under skewness heterogeneity is also proposed and discussed. A simulation study was performed for the case k?=?3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号