首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 226 毫秒
1.
Make‐to‐order (MTO) manufacturers must ensure concurrent availability of all parts required for production, as any unavailability may cause a delay in completion time. A major challenge for MTO manufacturers operating under high demand variability is to produce customized parts in time to meet internal production schedules. We present a case study of a producer of MTO offshore oil rigs that highlights the key aspects of the problem. The producer was faced with an increase in both demand and demand variability. Consequently, it had to rely heavily on subcontracting to handle production requirements that were in excess of its capacity. We focused on the manufacture of customized steel panels, which represent the main sub‐assemblies for building an oil rig. We considered two key tactical parameters: the planning window of the master production schedule and the planned lead time of each workstation. Under the constraint of a fixed internal delivery lead time, we determined the optimal planning parameters. This improvement effort reduced the subcontracting cost by implementing several actions: the creation of a master schedule for each sub‐assembly family of the steel panels, the smoothing of the master schedule over its planning window, and the controlling of production at each workstation by its planned lead time. We report our experience in applying the analytical model, the managerial insights gained, and how the application benefits the oil‐rig producer.  相似文献   

2.
This paper extends the studies by Sridharan, Berry, and Udayabhanu from single-level MPS systems to multilevel material requirements planning (MRP) systems, and examines the impact of product structure, lot-sizing rules and cost parameters upon the selection of MPS freezing parameters under deterministic demand. A model is built to simulate the master production scheduling and material requirements planning operations in a make-to-order environment. The results show that all the MPS freezing parameters studied have a significant impact upon total inventory costs and schedule instability in multilevel MRP systems. First, the order-based freezing method is preferable to the period-based method. Secondly, the study finds that increasing the freezing proportion reduces both total inventory costs and schedule instability. This finding contradicts the finding by Sridharan et al. in single-level systems. Thirdly, the study finds that a higher replanning periodicity results in both lower total inventory cost and lower schedule instability. The study also indicates that the product structure and lot-sizing rules do not significantly influence the selection of MPS freezing parameters in a practical sense under most situations. However, the cost parameter seems to significantly influence the selection of replanning periodicity.  相似文献   

3.

Master production schedules are usually updated by the use of a rolling schedule. Previous studies on rolling schedules seem to form the consensus that frequent replanning of a master production schedule (MPS) can increase costs and schedule instability. Building on previous research on rolling schedules, this study addresses the impact of overestimation or underestimation of demand on the rolling horizon MPS cost performance for various replanning frequencies. The MPS model developed in this paper is based on actual data collected from a paint company. Results indicate that under both the forecast errors conditions investigated in this study, a two-replanning interval provided the best MPS cost performance for this company environment. However, results from the sensitivity analysis performed on the MPS model indicate that when the setup and inventory carrying costs are high, a 1-month replanning frequency (frequent replanning) seems more appropriate for both of the above forecast error scenarios.  相似文献   

4.

Material requirements planning (MRP) systems are deemed to deal with master schedules with lumpy demand patterns better than any other production scheduling system. Past studies have advocated important advantages of using MRP systems. The objective of this paper is to look into the impact of patterns of demand lumpiness on the performance of MRP systems by a simulation study. Results show that there is an important threshold point in terms of degree of lumpiness at which MRP system performance starts to deteriorate in the operating conditions considered. If master production schedules (MPS) can be controlled by manufacturers, MRP users should exercise caution to introduce demand lumpiness in MPS to improve system performance. If not, MRP users should then examine the given lumpiness and choose an appropriate lot-sizing rule that has been shown to take advantage of the effect of demand lumpiness.  相似文献   

5.
Rush orders are immediate customer demands that exceed the expectation of a currently effective MPS (master production schedule). Decision-makers are often hesitant in the decision of accepting such orders. This paper presents a multiple criteria decision-making model for justifying the acceptance of rush orders for an assembly-to-order production system. Four criteria or production objectives are simultaneously considered and a multiple objective programming technique, the e-constraints approach, is adopted to solve the decision-making problem. This model could give the cost estimation for producing a rush order under various combinations of production objectives. The computed cost value could serve as a valuable reference for justifying the economics of accepting the rush order, and help to determine its pricing strategy.  相似文献   

6.
A three-tiered hierarchical production plan (HPP) for a strictly make-to-order steel fabrication plant with the objective of developing a production plan and master schedule for a set of product archetypes is implemented. Data are collected from an actual steel fabrication plant located in the Midwestern section of the US. An aggregate linear programming model, a non-linear disaggregate model and a master production schedule comprise the respective tiers. Appropriate models provide the forecasts needed in the first two tiers. A production plan and master schedule based on data collected at the plant, benefits expected for its implementation and practical limitations are reported.  相似文献   

7.
The basic master production scheduling problem assumes that periodic demands are known with certainty. Uncertainty in the forecasts arc typically accommodated afterwards by adding safety stocks to a schedule. Two popular methods for establishing safety stocks are: (1) the constant cycle service level method; and (2) the constant safety stock method. This paper outlines these methods and then develops a third method which results in optimal safety stocks. The paper includes an experimental investigation aimed at comparing performances of the three safety stock methods. The constant safety stock method is shown to perform within one or two per cent of optimal, while the constant cycle service level method performs worse under most conditions. Shorter lead times, variable order interval lengths, and time-dependent forecast errors all adversely affect the performances of the non-optimal methods. An operations manager could use these results to evaluate the appropriateness of the methods for his master production scheduling environment.  相似文献   

8.
Semiconductor manufacturing is confronted with a large number of products whose mix is changing over time, heterogeneous fabrication processes, re-entrant flows of material, and different sources of environmental and system uncertainty. In this context, the mid-term production planning approach, i.e., master planning, typically does not capture the entire complexity of the shop-floor. It deals with an aggregated representation of the production system. There is a need for evaluating the planning algorithm in use while taking the execution level into account. Therefore, we introduce in this paper a simulation-based framework that allows for modeling the behavior of the market demand and the production system. An appropriate performance assessment methodology is proposed. The performance of two heuristic approaches for master planning in semiconductor manufacturing, a genetic algorithm and a rule-based assignment procedure, is evaluated within a rolling horizon setting while considering demand and execution uncertainty. A reduced discrete-event simulation model is used to mimic a one-stage network of wafer fabrication facilities. The results of simulation experiments are discussed.  相似文献   

9.
Investments in dedicated and flexible capacity have traditionally been based on demand forecasts obtained under the assumption of a predetermined product price. However, the impact on revenue of poor capacity and flexibility decisions can be mitigated by appropriately changing prices. While investment decisions need to be made years before demand is realized, pricing decisions can easily be postponed until product launch, when more accurate demand information is available. We study the effect of this price decision delay on the optimal investments on dedicated and flexible capacity. Computational experiments show that considering price postponement at the planning stage leads to a large reduction in capacity investments, especially in the more expensive flexible capacity, and a significant increase in profits. Its impact depends on demand correlation, elasticity and diversion, ratio of fixed to variable capacity costs, and uncertainty remaining at the times the pricing and production decisions are made.  相似文献   

10.
We consider a manufacturer without any frozen periods in production schedules so that it can dynamically update the schedules as the demand forecast evolves over time until the realization of actual demand. The manufacturer has a fixed production capacity in each production period, which impacts the time to start production as well as the production schedules. We develop a dynamic optimization model to analyze the optimal production schedules under capacity constraint and demand‐forecast updating. To model the evolution of demand forecasts, we use both additive and multiplicative versions of the martingale model of forecast evolution. We first derive expressions for the optimal base stock levels for a single‐product model. We find that manufacturers located near their market bases can realize most of their potential profits (i.e., profit made when the capacity is unlimited) by building a very limited amount of capacity. For moderate demand uncertainty, we also show that it is almost impossible for manufacturers to compensate for the increase in supply–demand mismatches resulting from long delivery lead times by increasing capacity, making lead‐time reduction a better alternative than capacity expansion. We then extend the model to a multi‐product case and derive expressions for the optimal production quantities for each product given a shared capacity constraint. Using a two‐product model, we show that the manufacturer should utilize its capacity more in earlier periods when the demand for both products is more positively correlated.  相似文献   

11.
Abstract. The purpose of this paper is to examine the impact of forecast errors on the performance of a multi-product, multilevel production planning system via MRP system nervousness. The accuracy of forecasting methods was at one time a major concern of production scheduling and inventory control. However, with the advent of material requirements planning (MRP) systems, the significance of selecting an accurate forecasting method has diminished. Inaccurate forecast results are taken as a fact of life in production planning. Instead of attempting to develop an accurate forecasting method, efforts have been devoted towards providing an appropriate buffering method ai the master production schedule level or on the shop floor level to counteract fluctuations in demand. MRP is capable of rescheduling planned orders as well as open orders to restore the priority integrity after the disruptive changes of forecast errors occur. Nevertheless, excessive rescheduling may lead to a problem, generally referred to as system nervousness. This study investigates this problem by means of a computer simulation model. The results show that the presence of forecasi  相似文献   

12.

In this paper, a simulation experiment has been developed to examine the combined influence of the design, inventory and environmental factors on the cost performance of a rolling horizon master production schedule. Specifically, a 2 5 factorial design was used to examine the effects associated with three rolling schedule design policies, one inventory policy and one environmental condition of forecast error on MPS cost performance. The study was based on actual data from a paint company. Results suggest that the choice of appropriate lot-size and inventory policies have a significant influence on MPS costs and that there are indeed important interactions between these policies and other design factors of a rolling schedule.  相似文献   

13.
Aggregate production planning (APP) has been studied extensively for the past two decades. The APP problem, also called production and workforce scheduling, is to determine the optimal workforce and production level in each period of the planning horizon in order to satisfy demand forecasts for these periods. The advantages of the APP are low cost of data collection and computational cost of the running model; the accuracy of data; and, effective managerial understanding of the results. If the product of concern takes longer than one period, it is called a long-cycle product. Examples of long-cycle products are aircraft, ships, buildings and special machines. A detailed model incorporating dynamic productivity and long-cycle products considerations is presented to solve the problem of production and workforce planning. Using a multistage production system approach, a search technique is developed to solve this class of problems where the objective function is linear and some of the constraint coefficients are dynamically nonlinear. The model provides a better solution than an aggregate production planning model, often used to solve these problems.  相似文献   

14.

This paper evaluates alternative methods of establishing the safety stock level taking into consideration of historical measures of forecasting accuracy and the needs for master production scheduling and material requirement planning under a rolling time horizon. A computer model is used to simulate the forecasting, master production scheduling and material planning activities in a company that produces to stock and the production activities are managed by multilevel MRP systems. The simulation output is analysed to evaluate the impact of safety stock methods on MRP system performance. The result of the study shows that using safety stock can help to reduce total cost, schedule instability and improve service level in the MRP systems. Guidelines are developed to help managers select methods to determine safety stock in MRP system operations.  相似文献   

15.
We consider the problem of managing demand risk in tactical supply chain planning for a particular global consumer electronics company. The company follows a deterministic replenishment‐and‐planning process despite considerable demand uncertainty. As a possible way to formally address uncertainty, we provide two risk measures, “demand‐at‐risk” (DaR) and “inventory‐at‐risk” (IaR) and two linear programming models to help manage demand uncertainty. The first model is deterministic and can be used to allocate the replenishment schedule from the plants among the customers as per the existing process. The other model is stochastic and can be used to determine the “ideal” replenishment request from the plants under demand uncertainty. The gap between the output of the two models as regards requested replenishment and the values of the risk measures can be used by the company to reallocate capacity among different products and to thus manage demand/inventory risk.  相似文献   

16.
Discretionary commonality is a form of operational flexibility used in multi‐product manufacturing environments. Consider a case where a firm produces and sells two products. Without discretionary commonality, each product is made through a unique combination of input and production capacity. With discretionary commonality, one of the inputs could be used for producing both products, and one of the production capacities could be used to process different inputs for producing one of the products. In the latter case, the manager can decide, upon the realization of uncertainty, not only the quantities for different products (outputs) but also the means of transforming inputs into outputs. The objective of this study is to understand how the firm's value, its inventory levels for inputs and capacity levels for resources are affected by the demand characteristics and market conditions. In pursuing this research, we extend Van Mieghem and Rudi ( 2002 )'s newsvendor network model to allow for the modeling of product interdependence, demand functions, random shocks, and firm's ex post pricing decision. Applying the general framework to the network with discretionary commonality, we discover that inventory and capacity management can be quite different compared to a network where commonality is non‐discretionary. Among other results, we find that as the degree of product substitution increases, the relative need for discretionary commonality increases; as the market correlation increases, while the firm's value may increase for complementary products, the discretionary common input decreases but the dedicated input increases. Numerical study shows that discretionary flexibility and responsive pricing are strategic substitutes.  相似文献   

17.
This study investigates how lot sizing techniques influence the profit performance, inventory level, and order lardiness of an assembly job shop controlled by MRP. Four single-level lot sizing techniques are compared by simulation analysis under two levels of master schedule instability and two levels of end item demand. A second analysis investigates the influence of a multilevel lot sizing technique, the generalized constrained-K (GCK) cost modification, on the four single-level techniques at low demand and low nervousness. The analyses reveal a previously unreported phenomenon. Given the same inventory costs, the single-level lot sizing techniques generate substantially different average batch sizes. The lot sizing techniques maintain the following order of increasing average batch size (and decreasing total setup time):

economic order quantity (EOQ)

period order quantity (POQ)

least total cost (LTC)

Silver-Meal heuristic (SML)

The causes for different average batch sizes among the lot sizing techniques are analysed and explained. Demand lumpiness, inherent in multilevel manufacturing systems controlled by MRP, is found to be a major factor. The number of setups each lot sizing technique generates is the primary determinant of profit performance, inventory level, and order tardiness. EOQ, a fixed order quantity technique, is less sensitive to nervousness than the discrete lot sizing techniques. EOQ_, however, generates the smallest average batch size, and, therefore, the most setups. Since setups consume capacity, EOQ, is more sensitive to higher demand. SML generates the largest average batch sizes, and is, therefore, less sensitive to increased demand. At low demand, the other lot sizing techniques perform better on all criteria. They generate smaller batches and, therefore, shorter actual lead times. The GCK cost modification increases the average batch size generated by each lot sizing technique. GCK improves the profit and customer service level of EOQ the lot sizing technique with the smallest batches. GCK causes the other lot sizing techniques to generate excessively large batches and, therefore, excessively long actual lead times.  相似文献   

18.
We present a stochastic version of a three-layer supply network planning problem that includes the selection of vendors that must be equipped with company-specific tools. The configuration of a supply network must be determined by using demand forecasts for a long planning horizon to meet a given service level. The risk induced by the uncertain demand is explicitly considered by incorporating the conditional value at risk. The objective is to maximize the weighted sum of the expected net present value of discounted cash flows and the conditional value at risk. This would lead to a non-linear model formulation that is approximated by a mixed-integer linear model. This approximation is realized by a piecewise linearization of the expected backlogs and physical inventory as non-linear functions of cumulative production quantities. A two-stage stochastic programming approach is proposed. Our numerical analysis of generic test instances indicates that solving the linearized model formulation yields a robust and stable supply network configuration when demand is uncertain.  相似文献   

19.
To be efficient, logistics operations in e‐commerce require warehousing and transportation resources to be aligned with sales. Customer orders must be fulfilled with short lead times to ensure high customer satisfaction, and the costly under‐utilization of workers must be avoided. To approach this ideal, forecasting order quantities with high accuracy is essential. Many drivers of online sales, including seasonality, special promotions and public holidays, are well known, and they have been frequently incorporated into forecasting approaches. However, the impact of weather on e‐commerce operations has not been rigorously analyzed. In this study, we integrate weather data into the sales forecasting of the largest European online fashion retailer. We find that sunshine, temperature, and rain have a significant impact on daily sales, particularly in the summer, on weekends, and on days with extreme weather. Using weather forecasts, we have significantly improved sales forecast accuracy. We find that including weather data in the sales forecast model can lead to fewer sales forecast errors, reducing them by, on average, 8.6% to 12.2% and up to 50.6% on summer weekends. In turn, the improvement in sales forecast accuracy has a measurable impact on logistics and warehousing operations. We quantify the value of incorporating weather forecasts in the planning process for the order fulfillment center workforce and show how their incorporation can be leveraged to reduce costs and increase performance. With a perfect information planning scenario, excess costs can be reduced by 11.6% compared with the cost reduction attainable with a baseline model that ignores weather information in workforce planning.  相似文献   

20.
In the course of globalization, applying mass-customization strategies has led to a high diversity of variants in many economic sectors. Thus, customer demands are often less predictable, and handling increasing inventory stocks as well as avoiding shortfalls have become particularly important. All these complexity drivers result in higher supply chain risks. Postponement strategies have been proposed as a suitable approach to address these problems. Although the concept of postponement and its impact on the supply chain are theoretically well discussed, optimally configuring the entire production and distribution activities is still challenging. We present a two-stage stochastic mixed-integer linear programming model, which comprises an integrated production and distribution planning approach, and considers postponement concepts. In comparison to earlier approaches that examine postponement strategies, our model supports the decision maker under demand uncertainty and considers lead times, penalty costs for shortfalls, as well as inventory-keeping decisions over a tactical planning horizon. This allows an integrated investigation of both form and logistics postponement concepts. Moreover, we consider the decision maker’s risk attitude identifying non-dominated profitable and risk-averse strategies. We illustrate the benefits of the model by using a case study from the apparel industry, and present the results of a sensitivity analysis with respect to varying demand uncertainty and demand correlations as well as different preferences regarding risk aversion. Furthermore, we carry out performance and quality benchmarks and compare the results of a standard mixed-integer linear programming solver, a parallel nested Benders approach and a sample average approximation technique.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号