首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The potential for para‐occupational (or take‐home) exposures from contaminated clothing has been recognized for the past 60 years. To better characterize the take‐home asbestos exposure pathway, a study was performed to measure the relationship between airborne chrysotile concentrations in the workplace, the contamination of work clothing, and take‐home exposures and risks. The study included air sampling during two activities: (1) contamination of work clothing by airborne chrysotile (i.e., loading the clothing), and (2) handling and shaking out of the clothes. The clothes were contaminated at three different target airborne chrysotile concentrations (0–0.1 fibers per cubic centimeter [f/cc], 1–2 f/cc, and 2–4 f/cc; two events each for 31–43 minutes; six events total). Arithmetic mean concentrations for the three target loading levels were 0.01 f/cc, 1.65 f/cc, and 2.84 f/cc (National Institute of Occupational Health and Safety [NIOSH] 7402). Following the loading events, six matched 30‐minute clothes‐handling and shake‐out events were conducted, each including 15 minutes of active handling (15‐minute means; 0.014–0.097 f/cc) and 15 additional minutes of no handling (30‐minute means; 0.006–0.063 f/cc). Percentages of personal clothes‐handling TWAs relative to clothes‐loading TWAs were calculated for event pairs to characterize exposure potential during daily versus weekly clothes‐handling activity. Airborne concentrations for the clothes handler were 0.2–1.4% (eight‐hour TWA or daily ratio) and 0.03–0.27% (40‐hour TWA or weekly ratio) of loading TWAs. Cumulative chrysotile doses for clothes handling at airborne concentrations tested were estimated to be consistent with lifetime cumulative chrysotile doses associated with ambient air exposure (range for take‐home or ambient doses: 0.00044–0.105 f/cc year).  相似文献   

2.
Our reconstructed historical work scenarios incorporating a vintage 1950s locomotive can assist in better understanding the historical asbestos exposures associated with past maintenance and repairs and fill a literature data gap. Air sampling data collected during the exposure scenarios and analyzed by NIOSH 7400 (PCM) and 7402 (PCME) methodologies show personal breathing zone asbestiform fiber exposures were below the current OSHA exposure limits for the eight‐hour TWA permissible exposure limit (PEL) of 0.1 f/cc (range <0.007–0.064 PCME f/cc) and the 30‐minute short‐term excursion limit (EL) of 1.0 f/cc (range <0.045–0.32 PCME f/cc) and orders of magnitude below historic OSHA PEL and ACGIH TLVs. Bayesian decision analysis (BDA) results demonstrate that the 95th percentile point estimate falls into an AIHA exposure category 3 or 4 as compared to the current PEL and category 1 when compared to the historic PEL. BDA results demonstrate that bystander exposures would be classified as category 0. Our findings were also significantly below the published calcium magnesium insulations exposure range of 2.5 to 7.5 f/cc reported for historic work activities of pipefitters, mechanics, and boilermakers. Diesel‐electric locomotive pipe systems were typically insulated with a woven tape lagging that may have been chrysotile asbestos and handled, removed, and reinstalled during repair and maintenance activities. We reconstructed historical work scenarios containing asbestos woven tape pipe lagging that have not been characterized in the published literature. The historical work scenarios were conducted by a retired railroad pipefitter with 37 years of experience working with materials and locomotives.  相似文献   

3.
Sanding joint compounds is a dusty activity and exposures are not well characterized. Until the mid 1970s, asbestos‐containing joint compounds were used by some people such that sanding could emit dust and asbestos fibers. We estimated the distribution of 8‐h TWA concentrations and cumulative exposures to respirable dusts and chrysotile asbestos fibers for four worker groups: (1) drywall specialists, (2) generalists, (3) tradespersons who are bystanders to drywall finishing, and (4) do‐it‐yourselfers (DIYers). Data collected through a survey of experienced contractors, direct field observations, and literature were used to develop prototypical exposure scenarios for each worker group. To these exposure scenarios, we applied a previously developed semi‐empirical mathematical model that predicts area as well as personal breathing zone respirable dust concentrations. An empirical factor was used to estimate chrysotile fiber concentrations from respirable dust concentrations. On a task basis, we found mean 8‐h TWA concentrations of respirable dust and chrysotile fibers are numerically highest for specialists, followed by generalists, DIYers, and bystander tradespersons; these concentrations are estimated to be in excess of the respective current but not historical Threshold Limit Values. Due to differences in frequency of activities, annual cumulative exposures are highest for specialists, followed by generalists, bystander tradespersons, and DIYers. Cumulative exposure estimates for chrysotile fibers from drywall finishing are expected to result in few, if any, mesothelioma or excess lung cancer deaths according to recently published risk assessments. Given the dustiness of drywall finishing, we recommend diligence in the use of readily available source controls.  相似文献   

4.
Questions persist regarding assessment of workers’ exposures to products containing low levels of benzene, such as mineral spirit solvent (MSS). This study summarizes previously unpublished data for parts‐washing activities, and evaluates potential daily and lifetime cumulative benzene exposures incurred by workers who used historical and current formulations of a recycled mineral spirits solvent in manual parts washers. Measured benzene concentrations in historical samples from parts‐washing operations were frequently below analytical detection limits. To better assess benzene exposure among these workers, air‐to‐solvent concentration ratios measured for toluene, ethylbenzene, and xylenes (TEX) were used to predict those for benzene based on a statistical model, conditional on physical‐chemical theory supported by new thermodynamic calculations of TEX and benzene activity coefficients in a modeled MSS‐type solvent. Using probabilistic methods, the distributions of benzene concentrations were then combined with distributions of other exposure parameters to estimate eight‐hour time‐weighted average (TWA) exposure concentration distributions and corresponding daily respiratory dose distributions for workers using these solvents in parts washers. The estimated 50th (95th) percentile of the daily respiratory dose and corresponding eight‐hour TWA air concentration for workers performing parts washing are 0.079 (0.77) mg and 0.0030 (0.028) parts per million by volume (ppm) for historical solvent, and 0.020 (0.20) mg and 0.00078 (0.0075) ppm for current solvent, respectively. Both 95th percentile eight‐hour TWA respiratory exposure estimates for solvent formulations are less than 10% of the current Occupational Safety and Health Administration permissible exposure limit of 1.0 ppm for benzene.  相似文献   

5.
Over time, concerns have been raised regarding the potential for human exposure and risk from asbestos in cosmetic‐talc–containing consumer products. In 1985, the U.S. Food and Drug Administration (FDA) conducted a risk assessment evaluating the potential inhalation asbestos exposure associated with the cosmetic talc consumer use scenario of powdering an infant during diapering, and found that risks were below levels associated with background asbestos exposures and risk. However, given the scope and age of the FDA's assessment, it was unknown whether the agency's conclusions remained relevant to current risk assessment practices, talc application scenarios, and exposure data. This analysis updates the previous FDA assessment by incorporating the current published exposure literature associated with consumer use of talcum powder and using the current U.S. Environmental Protection Agency's (EPA) nonoccupational asbestos risk assessment approach to estimate potential cumulative asbestos exposure and risk for four use scenarios: (1) infant exposure during diapering; (2) adult exposure from infant diapering; (3) adult exposure from face powdering; and (4) adult exposure from body powdering. The estimated range of cumulative asbestos exposure potential for all scenarios (assuming an asbestos content of 0.1%) ranged from 0.0000021 to 0.0096 f/cc‐yr and resulted in risk estimates that were within or below EPA's acceptable target risk levels. Consistent with the original FDA findings, exposure and corresponding health risk in this range were orders of magnitude below upper‐bound estimates of cumulative asbestos exposure and risk at ambient levels, which have not been associated with increased incidence of asbestos‐related disease.  相似文献   

6.
The U.S. Environmental Protection Agency has begun discussions to consider its assessment of asbestos toxicity related to mineral form and fiber size. Brake workers are typically exposed to short chrysotile fibers. To explore the mesothelioma risk among brake workers, considering other occupational exposures to asbestos, data from a study that was published previously were obtained and the analysis was extended. The National Cancer Institute provided data from a case-control study of mesothelioma. Because many participants with a history of brake work also had employment in other asbestos-related occupations, mesothelioma cases and controls were compared for a history of brake work, controlling for employment in eight occupations with potential asbestos exposure. A stratified analysis was also performed excluding those with any of the eight occupations. Possible interactions between brake work and other occupational exposures related to risk of mesothelioma were also examined. The odds ratio (OR) for employment in brake installation or repair was 0.71 (95% CI: 0.30-1.60) when controlled for insulation or shipbuilding. When a history of employment in any of the eight occupations with potential asbestos exposure was controlled, the OR was 0.82 (95% CI: 0.36-1.80). ORs did not increase with increasing duration of brake work. Exclusion of those with any of the eight exposures resulted in an OR of 0.62 (95% CI: 0.01-4.71) for occupational brake work. There was no evidence of an interaction between brake work and other occupational exposures. These latter analyses were based on small numbers of exposed cases. The results are consistent with the existing literature indicating that brake work does not increase the risk of mesothelioma and adds to the evidence that fiber type and size are important determinants of mesothelioma risk.  相似文献   

7.
To assess the maximum possible impact of further government regulation of asbestos exposure, projections were made of the use of asbestos in nine product categories for the years 1985-2000. A life table risk assessment model was then developed to estimate the excess cases of cancer and lost person-years of life likely to occur among those occupationally and nonoccupationally exposed to the nine asbestos product categories manufactured in 1985-2000. These estimates were made under the assumption that government regulation remains at its 1985 level. Use of asbestos in the nine product categories was predicted to decline in all cases except for friction products. The risk assessment results show that, although the cancer risks from future exposure to asbestos are significantly less than those from past exposures, in the absence of more stringent regulations, a health risk remains.  相似文献   

8.
The mesothelioma epidemic in the United States, which peaked during the 2000–2004 period, can be traced to high‐level asbestos exposures experienced by males in occupational settings prior to the full recognition of the disease‐causing potential of asbestos and the establishment of enforceable asbestos exposure limits by the Occupational Safety and Health Administration (OSHA) in 1971. Many individuals diagnosed with mesothelioma where asbestos has been identified as a contributing cause of the disease have filed claims seeking compensation from asbestos settlement trusts or through the court system. An individual with mesothelioma typically has been exposed to asbestos in more than one setting and from more than one asbestos product. Apportioning risk for mesothelioma among contributing factors is an ongoing problem faced by occupational disease compensation boards, juries, parties responsible for paying damages, and currently by the U.S. Senate in its efforts to formulate a bill establishing an asbestos settlement trust. In this article we address the following question: If an individual with mesothelioma where asbestos has been identified as a contributing cause were to be compensated for his or her disease, how should that compensation be apportioned among those responsible for the asbestos exposures? For the purposes of apportionment, we assume that asbestos is the only cause of mesothelioma and that every asbestos exposure contributes, albeit differentially, to the risk. We use an extension of the mesothelioma risk model initially proposed in the early 1980s to quantify the contribution to risk of each exposure as a percentage of the total risk. The percentage for each specific discrete asbestos exposure depends on the start and end dates, the intensity, and the asbestos fiber type for the exposure. We provide justification for the use of the mesothelioma risk model for apportioning risk and discuss how to assess uncertainty associated with its application.  相似文献   

9.
Upperbound lifetime excess cancer risks were calculated for activities associated with asbestos abatement using a risk assessment framework developed for EPA's Superfund program. It was found that removals were associated with cancer risks to workers which were often greater than the commonly accepted cancer risk of 1 x 10(-6), although lower than occupational exposure limits associated with risks of 1 x 10(-3). Removals had little effect in reducing risk to school populations. Risks to teachers and students in school buildings containing asbestos were approximately the same as risks associated with exposure to ambient asbestos by the general public and were below the levels typically of concern to regulatory agencies. During abatement, however, there were increased risks to both workers and nearby individuals. Careless, everyday building maintenance generated the greatest risk to workers followed by removals and encapsulation. If asbestos abatement was judged by the risk criteria applied to EPA's Superfund program, the no-action alternative would likely be selected in preference to removal in a majority of cases. These conclusions should only be interpreted within the context of an overall asbestos risk management program, which includes consideration of specific fiber types and sizes, sampling and analytical limitations, physical condition of asbestos-containing material, episodic peak exposures, and the number of people potentially exposed.  相似文献   

10.
The ultimate goal of the research reported in this series of three articles is to derive distributions of doses of selected environmental tobacco smoke (ETS)-related chemicals for nonsmoking workers. This analysis uses data from the 16-City Study collected with personal monitors over the course of one workday in workplaces where smoking occurred. In this article, we describe distributions of ETS chemical concentrations and the characteristics of those distributions (e.g., whether the distribution was log normal for a given constituent) for the workplace exposure. Next, we present population parameters relevant for estimating dose distributions and the methods used for estimating those dose distributions. Finally, we derive distributions of doses of selected ETS-related constituents obtained in the workplace for people in smoking work environments. Estimating dose distributions provided information beyond the usual point estimate of dose and showed that the preponderance of individuals exposed to ETS in the workplace were exposed at the low end of the dose distribution curve. The results of this analysis include estimations of hourly maxima and time-weighted average (TWA) doses of nicotine from workplace exposures to ETS (extrapolated from 1 day to 1 week) and doses derived from modeled lung burdens of ultraviolet-absorbing particulate matter (UVPM) and solanesol resulting from workplace exposures to ETS (extrapolated from 1 day to 1 year).  相似文献   

11.
This study's objective is to assess the risk of asbestos‐related disease being contracted by past users of cosmetic talcum powder.  To our knowledge, no risk assessment studies using exposure data from historical exposures or chamber simulations have been published. We conducted activity‐based sampling with cosmetic talcum powder samples from five opened and previously used containers that are believed to have been first manufactured and sold in the 1960s and 1970s.  These samples had been subject to conflicting claims of asbestos content; samples with the highest claimed asbestos content were tested.  The tests were conducted in simulated‐bathroom controlled chambers with volunteers who were talc users.  Air sampling filters were prepared by direct preparation techniques and analyzed by phase contrast microscopy (PCM), transmission electron microscopy (TEM) with energy‐dispersive x‐ray (EDX) spectra, and selective area diffraction (SAED).  TEM analysis for asbestos resulted in no confirmed asbestos fibers and only a single fiber classified as “ambiguous.”  Hypothetical treatment of this fiber as if it were asbestos yields a risk of 9.6 × 10?7 (under one in one million) for a lifetime user of this cosmetic talcum powder.  The exposure levels associated with these results range from zero to levels far below those identified in the epidemiology literature as posing a risk for asbestos‐related disease, and substantially below published historical environmental background levels.  The approaches used for this study have potential application to exposure evaluations of other talc or asbestos‐containing materials and consumer products.  相似文献   

12.
The 1998 U.S. Environmental Protection Agency Office of Pesticide Programs (OPP) re-registration eligibility decision (RED) for phosphine fumigants has generated much interest in defining safe levels of exposure for workers and worker bystanders. This report summarizes the pertinent literature on phosphine toxicity, including animal inhalation studies and human epidemiology studies, and also describes a margin-of-exposure (MOE) analysis based on available worker exposure data. In addition, a safe occupational exposure limit is estimated using typical OPP assumptions, after determination of appropriate uncertainty factors, based on quality of data in the principal study and pharmacokinetic considerations. While a conservative 8-hour time-weighted average (TWA) of 0.1 ppm was calculated, the overall weight of evidence, from a risk-management perspective, supports a conclusion that an occupational TWA of 0.3 ppm provides adequate health protection. In addition, a 15-minute short-term exposure limit (STEL) of 3 ppm was estimated. Finally, in contrast to the MOE analysis described in the OPP's phosphine RED, the MOE analysis described herein does not indicate that fumigation workers are currently being exposed to unacceptable levels of phosphine. Collectively, these findings support the occupational exposure limits of 0.3 ppm (8-hour TWA) and 1 ppm (STEL) established in the updated applicator's manuals for phosphine-generating products, which recently received approval from OPP.  相似文献   

13.
Estimating the potential health risk encountered by workers due to their exposure to various chemicals is enormously complex, since many chemicals may be involved and each may have multiple toxic effects. As an aid to this estimation process, a computer program, or model, which computes index numbers expressing the relative health risk of occupational groups due to their potential chemical exposures was developed at the National Institute for Occupational Safety and Health (NIOSH). This model considers an inventory of the chemicals to which specific occupational groups are potentially exposed, the published information regarding the toxic effects of each chemical, and the conditions of occupational exposure. The system then develops indices of potential occupational group health risk by considering weighted combinations of eight distinct health effects. No direct comparison with external occupational risk indices is currently possible, but internal testing of the model reveals no obvious inconsistencies.  相似文献   

14.
In evaluating the risk of exposure to health hazards, characterizing the dose‐response relationship and estimating acceptable exposure levels are the primary goals. In analyses of health risks associated with exposure to ionizing radiation, while there is a clear agreement that moderate to high radiation doses cause harmful effects in humans, little has been known about the possible biological effects at low doses, for example, below 0.1 Gy, which is the dose range relevant to most radiation exposures of concern today. A conventional approach to radiation dose‐response estimation based on simple parametric forms, such as the linear nonthreshold model, can be misleading in evaluating the risk and, in particular, its uncertainty at low doses. As an alternative approach, we consider a Bayesian semiparametric model that has a connected piece‐wise‐linear dose‐response function with prior distributions having an autoregressive structure among the random slope coefficients defined over closely spaced dose categories. With a simulation study and application to analysis of cancer incidence data among Japanese atomic bomb survivors, we show that this approach can produce smooth and flexible dose‐response estimation while reasonably handling the risk uncertainty at low doses and elsewhere. With relatively few assumptions and modeling options to be made by the analyst, the method can be particularly useful in assessing risks associated with low‐dose radiation exposures.  相似文献   

15.
Indirect exposures to 2,3,7,8-tetrachlorodibenzo- p -dioxin (TCDD) and other toxic materials released in incinerator emissions have been identified as a significant concern for human health. As a result, regulatory agencies and researchers have developed specific approaches for evaluating exposures from indirect pathways. This paper presents a quantitative assessment of the effect of uncertainty and variation in exposure parameters on the resulting estimates of TCDD dose rates received by individuals indirectly exposed to incinerator emissions through the consumption of home-grown beef. The assessment uses a nested Monte Carlo model that separately characterizes uncertainty and variation in dose rate estimates. Uncertainty resulting from limited data on the fate and transport of TCDD are evaluated, and variations in estimated dose rates in the exposed population that result from location-specific parameters and individuals'behaviors are characterized. The analysis indicates that lifetime average daily dose rates for individuals living within 10 km of a hypothetical incinerator range over three orders of magnitude. In contrast, the uncertainty in the dose rate distribution appears to vary by less than one order of magnitude, based on the sources of uncertainty included in this analysis. Current guidance for predicting exposures from indirect exposure pathways was found to overestimate the intakes for typical and high-end individuals.  相似文献   

16.
This paper estimates the number of workers in the United States who were occupationally exposed to asbestos during and after World War II and assesses the impact of this exposure on overall cancer mortality. The results suggest that over half of the estimated 7–8 million potentially exposed workers employed between 1940 and 1970 may still be alive and at risk of dying from some form of asbestos-related cancer. While the maximum number of excess cancer deaths associated with this occupational exposure is likely to occur sometime in this decade, such deaths will continue to be seen for many years thereafter. At their peak, these deaths may account for an estimated 3% of the annual cancer death toll, with an associated range of 1.4–4.4%.  相似文献   

17.
Estimating the potential health risk encountered by workers due to their exposure to various chemicals is enormously complex, since many chemicals be involved and each may have multiple toxic effects. As an aid to this estimation process, a computer program, or model, which computes index numbers expressing the relative health risk of occupational groups due to their potential chemical exposures was developed at the National Institute for Occupational Safety and Health (NIOSH). This model considers an inventory of the chemicals to which specific occupational groups are potentially exposed, the published information regarding the toxic effects of each chemical, and the conditions of occupational exposure. The system then develops indices of potential occupational group health risk by considering weighted combinations of eight distinct health effects. No direct comparison with external occupational risk indices is currently possible, but internal testing of the model reveals no obvious inconsistencies.  相似文献   

18.
There is a need to advance our ability to characterize the risk of inhalational anthrax following a low‐dose exposure. The exposure scenario most often considered is a single exposure that occurs during an attack. However, long‐term daily low‐dose exposures also represent a realistic exposure scenario, such as what may be encountered by people occupying areas for longer periods. Given this, the objective of the current work was to model two rabbit inhalational anthrax dose‐response data sets. One data set was from single exposures to aerosolized Bacillus anthracis Ames spores. The second data set exposed rabbits repeatedly to aerosols of B. anthracis Ames spores. For the multiple exposure data the cumulative dose (i.e., the sum of the individual daily doses) was used for the model. Lethality was the response for both. Modeling was performed using Benchmark Dose Software evaluating six models: logprobit, loglogistic, Weibull, exponential, gamma, and dichotomous‐Hill. All models produced acceptable fits to either data set. The exponential model was identified as the best fitting model for both data sets. Statistical tests suggested there was no significant difference between the single exposure exponential model results and the multiple exposure exponential model results, which suggests the risk of disease is similar between the two data sets. The dose expected to cause 10% lethality was 15,600 inhaled spores and 18,200 inhaled spores for the single exposure and multiple exposure exponential dose‐response model, respectively, and the 95% lower confidence intervals were 9,800 inhaled spores and 9,200 inhaled spores, respectively.  相似文献   

19.
We review approaches for characterizing “peak” exposures in epidemiologic studies and methods for incorporating peak exposure metrics in dose–response assessments that contribute to risk assessment. The focus was on potential etiologic relations between environmental chemical exposures and cancer risks. We searched the epidemiologic literature on environmental chemicals classified as carcinogens in which cancer risks were described in relation to “peak” exposures. These articles were evaluated to identify some of the challenges associated with defining and describing cancer risks in relation to peak exposures. We found that definitions of peak exposure varied considerably across studies. Of nine chemical agents included in our review of peak exposure, six had epidemiologic data used by the U.S. Environmental Protection Agency (US EPA) in dose–response assessments to derive inhalation unit risk values. These were benzene, formaldehyde, styrene, trichloroethylene, acrylonitrile, and ethylene oxide. All derived unit risks relied on cumulative exposure for dose–response estimation and none, to our knowledge, considered peak exposure metrics. This is not surprising, given the historical linear no‐threshold default model (generally based on cumulative exposure) used in regulatory risk assessments. With newly proposed US EPA rule language, fuller consideration of alternative exposure and dose–response metrics will be supported. “Peak” exposure has not been consistently defined and rarely has been evaluated in epidemiologic studies of cancer risks. We recommend developing uniform definitions of “peak” exposure to facilitate fuller evaluation of dose response for environmental chemicals and cancer risks, especially where mechanistic understanding indicates that the dose response is unlikely linear and that short‐term high‐intensity exposures increase risk.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号