首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 94 毫秒
1.
Biased sampling from an underlying distribution with p.d.f. f(t), t>0, implies that observations follow the weighted distribution with p.d.f. f w (t)=w(t)f(t)/E[w(T)] for a known weight function w. In particular, the function w(t)=t α has important applications, including length-biased sampling (α=1) and area-biased sampling (α=2). We first consider here the maximum likelihood estimation of the parameters of a distribution f(t) under biased sampling from a censored population in a proportional hazards frailty model where a baseline distribution (e.g. Weibull) is mixed with a continuous frailty distribution (e.g. Gamma). A right-censored observation contributes a term proportional to w(t)S(t) to the likelihood; this is not the same as S w (t), so the problem of fitting the model does not simply reduce to fitting the weighted distribution. We present results on the distribution of frailty in the weighted distribution and develop an EM algorithm for estimating the parameters of the model in the important Weibull–Gamma case. We also give results for the case where f(t) is a finite mixture distribution. Results are presented for uncensored data and for Type I right censoring. Simulation results are presented, and the methods are illustrated on a set of lifetime data.  相似文献   

2.
In this paper, progressive-stress accelerated life tests are applied when the lifetime of a product under design stress follows the exponentiated distribution [G(x)]α. The baseline distribution, G(x), follows a general class of distributions which includes, among others, Weibull, compound Weibull, power function, Pareto, Gompertz, compound Gompertz, normal and logistic distributions. The scale parameter of G(x) satisfies the inverse power law and the cumulative exposure model holds for the effect of changing stress. A special case for an exponentiated exponential distribution has been discussed. Using type-II progressive hybrid censoring and MCMC algorithm, Bayes estimates of the unknown parameters based on symmetric and asymmetric loss functions are obtained and compared with the maximum likelihood estimates. Normal approximation and bootstrap confidence intervals for the unknown parameters are obtained and compared via a simulation study.  相似文献   

3.
Knowledge concerning the family of univariate continuous distributions with density function f and distribution function F defined through the relation f(x) = F α(x)(1 ? F(x))β, α, β ? , is reviewed and modestly extended. Symmetry, modality, tail behavior, order statistics, shape properties based on the mode, L-moments, and—for the first time—transformations between members of the family are the general properties considered. Fully tractable special cases include all the complementary beta distributions (including uniform, power law and cosine distributions), the logistic, exponential and Pareto distributions, the Student t distribution on 2 degrees of freedom and, newly, the distribution corresponding to α = β = 5/2. The logistic distribution is central to some of the developments of the article.  相似文献   

4.
Let Xi, 1 ≤ in, be independent identically distributed random variables with a common distribution function F, and let G be a smooth distribution function. We derive the limit distribution of α(Fn, G) - α(F, G)}, where Fn is the empirical distribution function based on X1,…,Xn and α is a Kolmogorov-Lévy-type metric between distribution functions. For α ≤ 0 and two distribution functions F and G the metric pα is given by pα(F, G) = inf {? ≤ 0: G(x - α?) - ? F(x)G(x + α?) + ? for all x ?}.  相似文献   

5.
6.
Results of an exhaustive study of the bias of the least square estimator (LSE) of an first order autoregression coefficient α in a contaminated Gaussian model are presented. The model describes the following situation. The process is defined as Xt = α Xt-1 + Yt . Until a specified time T, Yt are iid normal N(0, 1). At the moment T we start our observations and since then the distribution of Yt, tT, is a Tukey mixture T(εσ) = (1 – ε)N(0,1) + εN(0, σ2). Bias of LSE as a function of α and ε, and σ2 is considered. A rather unexpected fact is revealed: given α and ε, the bias does not change montonically with σ (“the magnitude of the contaminant”), and similarly, given α and σ, the bias is not growing with ε (“the amount of contaminants”).  相似文献   

7.
《随机性模型》2013,29(1):25-37
For a shot-noise process X(t) with Poisson arrival times and exponentially diminishing shocks of i.i.d. sizes, we consider the first time T b at which a given level b > 0 is exceeded. An integral equation for the joint density of T b and X(T b ) is derived and, for the case of exponential jumps, solved explicitly in terms of Laplace transforms (LTs). In the general case we determine the ordinary LT of the function ? P(T b > t) in terms of certain LTs derived from the distribution function H(x; t) = P(X(t) ≤ x), considered as a function of both variables x and t. Moreover, for G(t, u) = P(T b > t, X(t) < u), that is the joint distribution function of sup0 ≤ st X(s) and X(t), an integro-differential equation is presented, whose unique solution is G(t, u).  相似文献   

8.
In partly linear models, the dependence of the response y on (x T, t) is modeled through the relationship y=x T β+g(t)+?, where ? is independent of (x T, t). We are interested in developing an estimation procedure that allows us to combine the flexibility of the partly linear models, studied by several authors, but including some variables that belong to a non-Euclidean space. The motivating application of this paper deals with the explanation of the atmospheric SO2 pollution incidents using these models when some of the predictive variables belong in a cylinder. In this paper, the estimators of β and g are constructed when the explanatory variables t take values on a Riemannian manifold and the asymptotic properties of the proposed estimators are obtained under suitable conditions. We illustrate the use of this estimation approach using an environmental data set and we explore the performance of the estimators through a simulation study.  相似文献   

9.
In this article, we derive exact expressions for the single and product moments of order statistics from Weibull distribution under the contamination model. We assume that X1, X2, …, Xn ? p are independent with density function f(x) while the remaining, p observations (outliers) Xn ? p + 1, …, Xn are independent with density function arises from some modified version of f(x), which is called g(x), in which the location and/or scale parameters have been shifted in value. Next, we investigate the effect of the outliers on the BLUE of the scale parameter. Finally, we deduce some special cases.  相似文献   

10.
Consider an inhomogeneous Poisson process X on [0, T] whose unk-nown intensity function “switches” from a lower function g* to an upper function h* at some unknown point ?* that has to be identified. We consider two known continuous functions g and h such that g*(t) ? g(t) < h(t) ? h*(t) for 0 ? t ? T. We describe the behavior of the generalized likelihood ratio and Wald’s tests constructed on the basis of a misspecified model in the asymptotics of large samples. The power functions are studied under local alternatives and compared numerically with help of simulations. We also show the following robustness result: the Type I error rate is preserved even though a misspecified model is used to construct tests.  相似文献   

11.
Let X, T, Y be random vectors such that the distribution of Y conditional on covariates partitioned into the vectors X = x and T = t is given by f(y; x, ), where = (, (t)). Here is a parameter vector and (t) is a smooth, real–valued function of t. The joint distribution of X and T is assumed to be independent of and . This semiparametric model is called conditionally parametric because the conditional distribution f(y; x, ) of Y given X = x, T = t is parameterized by a finite dimensional parameter = (, (t)). Severini and Wong (1992. Annals of Statistics 20: 1768–1802) show how to estimate and (·) using generalized profile likelihoods, and they also provide a review of the literature on generalized profile likelihoods. Under specified regularity conditions, they derive an asymptotically efficient estimator of and a uniformly consistent estimator of (·). The purpose of this paper is to provide a short tutorial for this method of estimation under a likelihood–based model, reviewing results from Stein (1956. Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, vol. 1, University of California Press, Berkeley, pp. 187–196), Severini (1987. Ph.D Thesis, The University of Chicago, Department of Statistics, Chicago, Illinois), and Severini and Wong (op. cit.).  相似文献   

12.
For given continuous distribution functions F(x) and G(y) and a Pearson correlation coefficient ρ, an algorithm is provided to construct a sequence of continuous bivariate distributions with marginals equal to F(x) and G(y) and the corresponding correlation coefficient converges to ρ. The algorithm can be easily implemented using S-Plus or R. Applications are given to generate bivariate random variables with marginals including Gamma, Beta, Weibull, and uniform distributions.  相似文献   

13.
A scaled version of the general AIMD model of transmission control protocol (TCP) used in Internet traffic congestion management leads to a Markov process x(t) representing the time dependent data flow that moves forward with constant speed on the positive axis and jumps backward to γx(t), 0 < γ < 1 according to a Poisson clock whose rate α(x) depends on the interval swept in between jumps. We give sharp conditions for Harris recurrence and analyze the convergence to equilibrium on multiple scales (polynomial, fractional exponential, exponential) identifying the critical case xα(x) ~ β. Criticality has different behavior according to whether it occurs at the origin or infinity. In each case, we determine the transient (possibly explosive), null—and positive—recurrent regimes by comparing β to ( ? ln?γ)? 1.  相似文献   

14.
Let T be a random variable having an absolutely continuous distribution function. It is known that linearity of E(T | T > t) can be used to characterize distributions such as exponential, power and Pareto distribution. In this work, we will extend the above results. More precisely, we characterize the distribution of T by using certain relationships of conditional moments of T. Our results can also be used to obtain new characterization of distributions based on adjacent order statistics or record values.  相似文献   

15.
This paper presents a methodology for model fitting and inference in the context of Bayesian models of the type f(Y | X,θ)f(X|θ)f(θ), where Y is the (set of) observed data, θ is a set of model parameters and X is an unobserved (latent) stationary stochastic process induced by the first order transition model f(X (t+1)|X (t),θ), where X (t) denotes the state of the process at time (or generation) t. The crucial feature of the above type of model is that, given θ, the transition model f(X (t+1)|X (t),θ) is known but the distribution of the stochastic process in equilibrium, that is f(X|θ), is, except in very special cases, intractable, hence unknown. A further point to note is that the data Y has been assumed to be observed when the underlying process is in equilibrium. In other words, the data is not collected dynamically over time. We refer to such specification as a latent equilibrium process (LEP) model. It is motivated by problems in population genetics (though other applications are discussed), where it is of interest to learn about parameters such as mutation and migration rates and population sizes, given a sample of allele frequencies at one or more loci. In such problems it is natural to assume that the distribution of the observed allele frequencies depends on the true (unobserved) population allele frequencies, whereas the distribution of the true allele frequencies is only indirectly specified through a transition model. As a hierarchical specification, it is natural to fit the LEP within a Bayesian framework. Fitting such models is usually done via Markov chain Monte Carlo (MCMC). However, we demonstrate that, in the case of LEP models, implementation of MCMC is far from straightforward. The main contribution of this paper is to provide a methodology to implement MCMC for LEP models. We demonstrate our approach in population genetics problems with both simulated and real data sets. The resultant model fitting is computationally intensive and thus, we also discuss parallel implementation of the procedure in special cases.  相似文献   

16.
Let Wt be a one-dimensional Brownian motion on the probability space (Ω,F,P), and let dxt = a(xt)dt + b(xt)dwt, b2(x) > 0, be a one-dimensional Ito stochastic differential equation. For a(x) = a0 + a1x + … + anxn on a bounded interval we obtain a lower bound for p(t,x,y), the transition density function of the homogeneous Markov process xt, depending directly on the coefficients a0,a1, …, an, and b(x).  相似文献   

17.
Abstract

We introduce here the truncated version of the unified skew-normal (SUN) distributions. By considering a special truncations for both univariate and multivariate cases, we derive the joint distribution of consecutive order statistics X(r, ..., r + k) = (X(r), ..., X(r + K))T from an exchangeable n-dimensional normal random vector X. Further we show that the conditional distributions of X(r + j, ..., r + k) given X(r, ..., r + j ? 1), X(r, ..., r + k) given (X(r) > t)?and X(r, ..., r + k) given (X(r + k) < t) are special types of singular SUN distributions. We use these results to determine some measures in the reliability theory such as the mean past life (MPL) function and mean residual life (MRL) function.  相似文献   

18.
For n independent Poisson processes such that the i th process has intensity function lMi(t) =δiρ(t; α) we consider estimation of p(t; α) =∫oρ:(u; α) du. Two procedures are developed, one using exact arrival times, the other using categorical arrival times. Two instances where p(t; α) =p(α t) are investigated further. An example applying the methodology to the active life of a judicial opinion is described.  相似文献   

19.
In analyzing the lifetime properties of a coherent system, the concept of “signature” is a useful tool. Let T be the lifetime of a coherent system having n iid components. The signature of the system is a probability vector s=(s1, s2, …, sn), such that si=P(T=Xi:n), where, Xi:n, i=1, 2, …, n denote the ordered lifetimes of the components. In this note, we assume that the system is working at time t>0. We consider the conditional signature of the system as a vector in which the ith element is defined as pi(t)=P(T=Xi:n|T>t) and investigate its properties as a function of time.  相似文献   

20.
Let {W(s); 8 ≥ 0} be a standard Wiener process, and let βN = (2aN (log (N/aN) + log log N)-1/2, 0 < αNN < ∞, where αN↑ and αN/N is a non-increasing function of N, and define γN(t) = βN[W(nN + taN) ? W(nN)), 0 ≥ t ≥ 1, with nN = NaN. Let K = {x ? C[0,1]: x is absolutely continuous, x(0) = 0 and }. We prove that, with probability one, the sequence of functions {γN(t), t ? [0,1]} is relatively compact in C[0,1] with respect to the sup norm ||·||, and its set of limit points is K. With aN = N, our result reduces to Strassen's well-known theorem. Our method of proof follows Strassen's original, direct approach. The latter, however, contains an oversight which, in turn, renders his proof invalid. Strassen's theorem is true, of course, and his proof can also be rectified. We do this in a somewhat more general context than that of his original theorem. Applications to partial sums of independent identically distributed random variables are also considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号