首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Epstein (1954) introduced the Type-I hybrid censoring scheme as a mixture of Type-I and Type-II censoring schemes. Childs et al. (2003) introduced the Type-II hybrid censoring scheme as an alternative to Type-I hybrid censoring scheme, and provided the exact distribution of the maximum likelihood estimator of the mean of a one-parameter exponential distribution based on Type-II hybrid censored samples. The associated confidence interval also has been provided. The main aim of this paper is to consider a two-parameter exponential distribution, and to derive the exact distribution of the maximum likelihood estimators of the unknown parameters based on Type-II hybrid censored samples. The marginal distributions and the exact confidence intervals are also provided. The results can be used to derive the exact distribution of the maximum likelihood estimator of the percentile point, and to construct the associated confidence interval. Different methods are compared using extensive simulations and one data analysis has been performed for illustrative purposes.  相似文献   

2.
Benjamin Laumen 《Statistics》2019,53(3):569-600
In this paper, we revisit the progressive Type-I censoring scheme as it has originally been introduced by Cohen [Progressively censored samples in life testing. Technometrics. 1963;5(3):327–339]. In fact, original progressive Type-I censoring proceeds as progressive Type-II censoring but with fixed censoring times instead of failure time based censoring times. Apparently, a time truncation has been added to this censoring scheme by interpreting the final censoring time as a termination time. Therefore, not much work has been done on Cohens's original progressive censoring scheme with fixed censoring times. Thus, we discuss distributional results for this scheme and establish exact distributional results in likelihood inference for exponentially distributed lifetimes. In particular, we obtain the exact distribution of the maximum likelihood estimator (MLE). Further, the stochastic monotonicity of the MLE is verified in order to construct exact confidence intervals for both the scale parameter and the reliability.  相似文献   

3.
This paper addresses the estimation for the unknown scale parameter of the half-logistic distribution based on a Type-I progressively hybrid censoring scheme. We evaluate the maximum likelihood estimate (MLE) via numerical method, and EM algorithm, and also the approximate maximum likelihood estimate (AMLE). We use a modified acceptance rejection method to obtain the Bayes estimate and corresponding highest posterior confidence intervals. We perform Monte Carlo simulations to compare the performances of the different methods, and we analyze one dataset for illustrative purposes.  相似文献   

4.
Epstein [Truncated life tests in the exponential case, Ann. Math. Statist. 25 (1954), pp. 555–564] introduced a hybrid censoring scheme (called Type-I hybrid censoring) and Chen and Bhattacharyya [Exact confidence bounds for an exponential parameter under hybrid censoring, Comm. Statist. Theory Methods 17 (1988), pp. 1857–1870] derived the exact distribution of the maximum-likelihood estimator (MLE) of the mean of a scaled exponential distribution based on a Type-I hybrid censored sample. Childs et al. [Exact likelihood inference based on Type-I and Type-II hybrid censored samples from the exponential distribution, Ann. Inst. Statist. Math. 55 (2003), pp. 319–330] provided an alternate simpler expression for this distribution, and also developed analogous results for another hybrid censoring scheme (called Type-II hybrid censoring). The purpose of this paper is to derive the exact bivariate distribution of the MLE of the parameter vector of a two-parameter exponential model based on hybrid censored samples. The marginal distributions are derived and exact confidence bounds for the parameters are obtained. The results are also used to derive the exact distribution of the MLE of the pth quantile, as well as the corresponding confidence bounds. These exact confidence intervals are then compared with parametric bootstrap confidence intervals in terms of coverage probabilities. Finally, we present some numerical examples to illustrate the methods of inference developed here.  相似文献   

5.
ABSTRACT

In this paper, under Type-I progressive hybrid censoring sample, we obtain maximum likelihood estimator of unknown parameter when the parent distribution belongs to proportional hazard rate family. We derive the conditional probability density function of the maximum likelihood estimator using moment-generating function technique. The exact confidence interval is obtained and compared by conducting a Monte Carlo simulation study for burr Type XII distribution. Finally, we obtain the Bayes and posterior regret gamma minimax estimates of the parameter under a precautionary loss function with precautionary index k = 2 and compare their behavior via a Monte Carlo simulation study.  相似文献   

6.

Recently, exact confidence bounds and exact likelihood inference have been developed based on hybrid censored samples by Chen and Bhattacharyya [Chen, S. and Bhattacharyya, G.K. (1998). Exact confidence bounds for an exponential parameter under hybrid censoring. Communications in StatisticsTheory and Methods, 17, 1857–1870.], Childs et al. [Childs, A., Chandrasekar, B., Balakrishnan, N. and Kundu, D. (2003). Exact likelihood inference based on Type-I and Type-II hybrid censored samples from the exponential distribution. Annals of the Institute of Statistical Mathematics, 55, 319–330.], and Chandrasekar et al. [Chandrasekar, B., Childs, A. and Balakrishnan, N. (2004). Exact likelihood inference for the exponential distribution under generalized Type-I and Type-II hybrid censoring. Naval Research Logistics, 51, 994–1004.] for the case of the exponential distribution. In this article, we propose an unified hybrid censoring scheme (HCS) which includes many cases considered earlier as special cases. We then derive the exact distribution of the maximum likelihood estimator as well as exact confidence intervals for the mean of the exponential distribution under this general unified HCS. Finally, we present some examples to illustrate all the methods of inference developed here.  相似文献   

7.
Following the work of Chen and Bhattacharyya [Exact confidence bounds for an exponential parameter under hybrid censoring. Comm Statist Theory Methods. 1988;17:1857–1870], several results have been developed regarding the exact likelihood inference of exponential parameters based on different forms of censored samples. In this paper, the conditional maximum likelihood estimators (MLEs) of two exponential mean parameters are derived under joint generalized Type-I hybrid censoring on the two samples. The moment generating functions (MGFs) and the exact densities of the conditional MLEs are obtained, using which exact confidence intervals are then developed for the model parameters. We also derive the means, variances, and mean squared errors of these estimates. An efficient computational method is developed based on the joint MGF. Finally, an example is presented to illustrate the methods of inference developed here.  相似文献   

8.
In this article, we focus on the general k-step step-stress accelerated life tests with Type-I censoring for two-parameter Weibull distributions based on the tampered failure rate (TFR) model. We get the optimum design for the tests under the criterion of the minimization of the asymptotic variance of the maximum likelihood estimate of the pth percentile of the lifetime under the normal operating conditions. Optimum test plans for the simple step-stress accelerated life tests under Type-I censoring are developed for the Weibull distribution and the exponential distribution in particular. Finally, an example is provided to illustrate the proposed design and a sensitivity analysis is conducted to investigate the robustness of the design.  相似文献   

9.
In this paper, we introduce a new adaptive Type-I progressive hybrid censoring scheme, which has some advantages over the progressive hybrid censoring schemes already discussed in the literature. Based on an adaptive Type-I progressively hybrid censored sample, we derive the exact distribution of the maximum-likelihood estimator (MLE) of the mean lifetime of an exponential distribution as well as confidence intervals for the failure rate using exact distribution, asymptotic distribution, and three parametric bootstrap resampling methods. Furthermore, we provide computational formula for the expected number of failures and investigate the performance of the point and interval estimation for the failure rate in this case. An alternative simple form for the distribution of the MLE under adaptive Type-II progressive hybrid censoring scheme proposed by Ng et al. [Statistical analysis of exponential lifetimes under an adaptive Type-II progressive censoring scheme, Naval Res. Logist. 56 (2009), pp. 687–698] is obtained. Finally, from the exact distribution of the MLE, we establish the explicit expression for the Bayes risk of a sampling plan under adaptive Type-II progressive hybrid censoring scheme when a general loss function is used, and present some optimal Bayes solutions under four different progressive hybrid censoring schemes to illustrate the effectiveness of the proposed method.  相似文献   

10.
In this paper, we consider a constant stress accelerated life test terminated by a hybrid Type-I censoring at the first stress level. The model is based on a general log-location-scale lifetime distribution with mean life being a linear function of stress and with constant scale. We obtain the maximum likelihood estimators (MLE) and the approximate maximum likelihood estimators (AMLE) of the model parameters. Approximate confidence intervals, likelihood ratio tests and two bootstrap methods are used to construct confidence intervals for the unknown parameters of the Weibull and lognormal distributions using the MLEs. Finally, a simulation study and two illustrative examples are provided to demonstrate the performance of the developed inferential methods.  相似文献   

11.
A generalized Type-I progressive hybrid censoring scheme was proposed recently to overcome the limitations of the progressive hybrid censoring scheme. In this article, we provide a robust Bayesian method to estimate the unknown parameters of the two-parameter exponential distribution of a generalized Type-I progressive hybrid censored sample. For each parameter, we derive the marginal posterior density functions and the corresponding Bayesian estimators under the squared error loss function. To assess the proposed method, Monte Carlo simulations are performed using a real dataset.  相似文献   

12.
The hybrid censoring scheme is a mixture of Type-I and Type-II censoring schemes. Based on hybrid censored samples, we first derive the maximum likelihood estimators of the unknown parameters and the expected Fisher’s information matrix of the generalized inverted exponential distribution (GIED). Monte Carlo simulations are performed to study the performance of the maximum likelihood estimators. Next we consider Bayes estimation under the squared error loss function. These Bayes estimates are evaluated by applying Lindley’s approximation method, the importance sampling procedure and Metropolis–Hastings algorithm. The importance sampling technique is used to compute the highest posterior density credible intervals. Two data sets are analyzed for illustrative purposes. Finally, we discuss a method of obtaining the optimum hybrid censoring scheme.  相似文献   

13.
ABSTRACT

Distributions of the maximum likelihood estimators (MLEs) in Type-II (progressive) hybrid censoring based on two-parameter exponential distributions have been obtained using a moment generating function approach. Although resulting in explicit expressions, the representations are complicated alternating sums. Using the spacings-based approach of Cramer and Balakrishnan [On some exact distributional results based on Type-I progressively hybrid censored data from exponential distributions. Statist Methodol. 2013;10:128–150], we derive simple expressions for the exact density and distribution functions of the MLEs in terms of B-spline functions. These representations can be easily implemented on a computer and provide an efficient method to compute density and distribution functions as well as moments of Type-II (progressively) hybrid censored order statistics.  相似文献   

14.
In the design of constant-stress life-testing experiments, the optimal allocation in a multi-level stress test with Type-I or Type-II censoring based on the Weibull regression model has been studied in the literature. Conventional Type-I and Type-II censoring schemes restrict our ability to observe extreme failures in the experiment and these extreme failures are important in the estimation of upper quantiles and understanding of the tail behaviors of the lifetime distribution. For this reason, we propose the use of progressive extremal censoring at each stress level, whereas the conventional Type-II censoring is a special case. The proposed experimental scheme allows some extreme failures to be observed. The maximum likelihood estimators of the model parameters, the Fisher information, and asymptotic variance–covariance matrices of the maximum likelihood estimates are derived. We consider the optimal experimental planning problem by looking at four different optimality criteria. To avoid the computational burden in searching for the optimal allocation, a simple search procedure is suggested. Optimal allocation of units for two- and four-stress-level situations is determined numerically. The asymptotic Fisher information matrix and the asymptotic optimal allocation problem are also studied and the results are compared with optimal allocations with specified sample sizes. Finally, conclusions and some practical recommendations are provided.  相似文献   

15.
There are several failure modes may cause system failed in reliability and survival analysis. It is usually assumed that the causes of failure modes are independent each other, though this assumption does not always hold. Dependent competing risks modes from Marshall-Olkin bivariate Weibull distribution under Type-I progressive interval censoring scheme are considered in this paper. We derive the maximum likelihood function, the maximum likelihood estimates, the 95% Bootstrap confidence intervals and the 95% coverage percentages of the parameters when shape parameter is known, and EM algorithm is applied when shape parameter is unknown. The Monte-Carlo simulation is given to illustrate the theoretical analysis and the effects of parameters estimates under different sample sizes. Finally, a data set has been analyzed for illustrative purposes.  相似文献   

16.
In this paper, we determine optimally spaced inspection times for the two-parameter lognormal distribution for any given progressive interval censoring plan. We investigate the effect of the number of inspections and the choice of those optimally spaced inspection times based on the asymptotic relative efficiencies of the maximum likelihood estimates of the parameters. We also discuss the optimal progressive Type-I interval censoring plan when the inspection times and the expected proportions of total failures in the experiment are pre-fixed.  相似文献   

17.
Type-I and Type-II censoring schemes are the widely used censoring schemes available for life testing experiments. A mixture of Type-I and Type-II censoring schemes is known as a hybrid censoring scheme. Different hybrid censoring schemes have been introduced in recent years. In the last few years, a progressive censoring scheme has also received considerable attention. In this article, we mainly consider the Bayesian inference of the unknown parameters of two-parameter exponential distribution under different hybrid and progressive censoring schemes. It is observed that in general the Bayes estimate and the associated credible interval of any function of the unknown parameters, cannot be obtained in explicit form. We propose to use the Monte Carlo sampling procedure to compute the Bayes estimate and also to construct the associated credible interval. Monte Carlo Simulation experiments have been performed to see the effectiveness of the proposed method in case of Type-I hybrid censored samples. The performances are quite satisfactory. One data analysis has been performed for illustrative purposes.  相似文献   

18.
This article is devoted to the development of product of spacings estimator for a Progressive hybrid Type-I censoring scheme with binomial removals. The experimental units are assumed to follow inverse Lindley distribution. We propose a Bayes estimator of associated scale parameter based on the product of spacings function and simultaneously compare it with that obtained under a usual Bayesian estimation procedure. The estimators are obtained under the squared error loss function along with corresponding HP intervals evaluated by using the Markov chain Monte-Carlo technique. The classical product of spacings estimator has also been derived and compared with the maximum likelihood estimator in addition to 95% average asymptotic confidence intervals. The applicability of the proposed methods is demonstrated by analysing a real data of guinea pigs affected with tuberculosis for the considered censoring scheme.  相似文献   

19.
In this paper the study of relative bias (RB), exact variance and mean square error (MSE) of the maximum likelihood estimators of the exponential distribution under type I progressive censoring with changing failure rates is considered. A minimum mean square error (MMSE) estimator for the parameter at each stage is proposed. The numerical evalution of their relative performance is made for selected values of n and p. Further results concerning group-censoring, total expected waiting time and optimal spacings of the times of censoring are derived and results obtained by Kendell and Anderson (1971) are deduced as special cases.  相似文献   

20.
The hybrid censoring scheme, which is a mixture of Type-I and Type-II censoring schemes, has been extended to the case of progressive censoring schemes by Kundu and Joarder [Analysis of Type-II progressively hybrid censored data, Comput. Stat. Data Anal. 50 (2006), pp. 2509–2528] and Childs et al. [Exact likelihood inference for an exponential parameter under progressive hybrid censoring schemes, in Statistical Models and Methods for Biomedical and Technical Systems, F. Vonta, M. Nikulin, N. Limnios, and C. Huber-Carol, eds., Birkhäuser, Boston, MA, 2007, pp. 323–334]. In this paper, we derive a simple expression for the Fisher information contained in Type-I and Type-II progressively hybrid censored data. An illustrative example is provided applicable to a scaled-exponential distribution to demonstrate our methodologies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号