首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Partial linear varying coefficient models (PLVCM) are often considered for analysing longitudinal data for a good balance between flexibility and parsimony. The existing estimation and variable selection methods for this model are mainly built upon which subset of variables have linear or varying effect on the response is known in advance, or say, model structure is determined. However, in application, this is unreasonable. In this work, we propose a simultaneous structure estimation and variable selection method, which can do simultaneous coefficient estimation and three types of selections: varying and constant effects selection, relevant variable selection. It can be easily implemented in one step by employing a penalized M-type regression, which uses a general loss function to treat mean, median, quantile and robust mean regressions in a unified framework. Consistency in the three types of selections and oracle property in estimation are established as well. Simulation studies and real data analysis also confirm our method.  相似文献   

2.
We propose a penalized quantile regression for partially linear varying coefficient (VC) model with longitudinal data to select relevant non parametric and parametric components simultaneously. Selection consistency and oracle property are established. Furthermore, if linear part and VC part are unknown, we propose a new unified method, which can do three types of selections: separation of varying and constant effects, selection of relevant variables, and it can be carried out conveniently in one step. Consistency in the three types of selections and oracle property in estimation are established as well. Simulation studies and real data analysis also confirm our method.  相似文献   

3.
In this paper, we propose a robust statistical inference approach for the varying coefficient partially nonlinear models based on quantile regression. A three-stage estimation procedure is developed to estimate the parameter and coefficient functions involved in the model. Under some mild regularity conditions, the asymptotic properties of the resulted estimators are established. Some simulation studies are conducted to evaluate the finite performance as well as the robustness of our proposed quantile regression method versus the well known profile least squares estimation procedure. Moreover, the Boston housing price data is given to further illustrate the application of the new method.  相似文献   

4.
In this paper, a new estimation procedure based on composite quantile regression and functional principal component analysis (PCA) method is proposed for the partially functional linear regression models (PFLRMs). The proposed estimation method can simultaneously estimate both the parametric regression coefficients and functional coefficient components without specification of the error distributions. The proposed estimation method is shown to be more efficient empirically for non-normal random error, especially for Cauchy error, and almost as efficient for normal random errors. Furthermore, based on the proposed estimation procedure, we use the penalized composite quantile regression method to study variable selection for parametric part in the PFLRMs. Under certain regularity conditions, consistency, asymptotic normality, and Oracle property of the resulting estimators are derived. Simulation studies and a real data analysis are conducted to assess the finite sample performance of the proposed methods.  相似文献   

5.
Varying coefficient partially linear models are usually used for longitudinal data analysis, and an interest is mainly to improve efficiency of regression coefficients. By the orthogonality estimation technology and the quadratic inference function method, we propose a new orthogonality-based estimation method to estimate parameter and nonparametric components in varying coefficient partially linear models with longitudinal data. The proposed procedure can separately estimate the parametric and nonparametric components, and the resulting estimators do not affect each other. Under some mild conditions, we establish some asymptotic properties of the resulting estimators. Furthermore, the finite sample performance of the proposed procedure is assessed by some simulation experiments.  相似文献   

6.
As a useful supplement to mean regression, quantile regression is a completely distribution-free approach and is more robust to heavy-tailed random errors. In this paper, a variable selection procedure for quantile varying coefficient models is proposed by combining local polynomial smoothing with adaptive group LASSO. With an appropriate selection of tuning parameters by the BIC criterion, the theoretical properties of the new procedure, including consistency in variable selection and the oracle property in estimation, are established. The finite sample performance of the newly proposed method is investigated through simulation studies and the analysis of Boston house price data. Numerical studies confirm that the newly proposed procedure (QKLASSO) has both robustness and efficiency for varying coefficient models irrespective of error distribution, which is a good alternative and necessary supplement to the KLASSO method.  相似文献   

7.
We propose in this article a novel dimension reduction method for varying coefficient models. The proposed method explores the rank reducible structure of those varying coefficients, hence, can do dimension reduction and semiparametric estimation, simultaneously. As a result, the new method not only improves estimation accuracy but also facilitates practical interpretation. To determine the structure dimension, a consistent BIC criterion is developed. Numerical experiments are also presented.  相似文献   

8.
The penalized spline is a popular method for function estimation when the assumption of “smoothness” is valid. In this paper, methods for estimation and inference are proposed using penalized splines under additional constraints of shape, such as monotonicity or convexity. The constrained penalized spline estimator is shown to have the same convergence rates as the corresponding unconstrained penalized spline, although in practice the squared error loss is typically smaller for the constrained versions. The penalty parameter may be chosen with generalized cross‐validation, which also provides a method for determining if the shape restrictions hold. The method is not a formal hypothesis test, but is shown to have nice large‐sample properties, and simulations show that it compares well with existing tests for monotonicity. Extensions to the partial linear model, the generalized regression model, and the varying coefficient model are given, and examples demonstrate the utility of the methods. The Canadian Journal of Statistics 40: 190–206; 2012 © 2012 Statistical Society of Canada  相似文献   

9.
Geographically weighted regression (GWR) is an important tool for exploring spatial non-stationarity of a regression relationship, in which whether a regression coefficient really varies over space is especially important in drawing valid conclusions on the spatial variation characteristics of the regression relationship. This paper proposes a so-called GWGlasso method for structure identification and variable selection in GWR models. This method penalizes the loss function of the local-linear estimation of the GWR model by the coefficients and their partial derivatives in the way of the adaptive group lasso and can simultaneously identify spatially varying coefficients, nonzero constant coefficients and zero coefficients. Simulation experiments are further conducted to assess the performance of the proposed method and the Dublin voter turnout data set is analysed to demonstrate its application.  相似文献   

10.
In this paper, we propose a new varying coefficient partially nonlinear model where both the response and predictors are not directly observed, but are observed by unknown distorting functions of a commonly observable covariate. Because of the complexity of the model, existing estimation methods cannot be directly employed. For this, we propose using an efficient nonparametric regression to estimate the unknown distortion functions concerning the covariates and response on the distorting variable, and further, we obtain the profile nonlinear least squares estimators for the parameters and the coefficient functions using the calibrated variables. Furthermore, we establish the asymptotic properties of the resulting estimators. To illustrate our proposed methodology, we carry out some simulated and real examples.  相似文献   

11.
Abstract

In this article, we focus on the variable selection for semiparametric varying coefficient partially linear model with response missing at random. Variable selection is proposed based on modal regression, where the non parametric functions are approximated by B-spline basis. The proposed procedure uses SCAD penalty to realize variable selection of parametric and nonparametric components simultaneously. Furthermore, we establish the consistency, the sparse property and asymptotic normality of the resulting estimators. The penalty estimation parameters value of the proposed method is calculated by EM algorithm. Simulation studies are carried out to assess the finite sample performance of the proposed variable selection procedure.  相似文献   

12.
ABSTRACT

In this paper, we study a novelly robust variable selection and parametric component identification simultaneously in varying coefficient models. The proposed estimator is based on spline approximation and two smoothly clipped absolute deviation (SCAD) penalties through rank regression, which is robust with respect to heavy-tailed errors or outliers in the response. Furthermore, when the tuning parameter is chosen by modified BIC criterion, we show that the proposed procedure is consistent both in variable selection and the separation of varying and constant coefficients. In addition, the estimators of varying coefficients possess the optimal convergence rate under some assumptions, and the estimators of constant coefficients have the same asymptotic distribution as their counterparts obtained when the true model is known. Simulation studies and a real data example are undertaken to assess the finite sample performance of the proposed variable selection procedure.  相似文献   

13.
赵明涛  许晓丽 《统计研究》2019,36(10):115-128
纵向数据是随着时间变化对个体进行重复观测而得到的一种相关性数据,广泛出现在诸多科学研究领域。在对个体进行观测时,测量误差不可避免,忽略测量误差往往会导致有偏估计。本文利用二次推断函数方法研究关于纵向数据的参数部分和非参数部分协变量均含有测量误差的部分线性变系数测量误差(errors-in-variables, EV)模型的估计问题。利用B样条逼近模型中的未知系数函数,构造关于回归参数和B样条系数的偏差修正的二次推断函数以处理个体内相关性和测量误差,得到回归参数和变系数的偏差修正的二次推断函数估计,然后证明了估计方法和结果的渐近性质。数值模拟和实例数据分析结果显示本文提出的方法具有一定的实用价值。  相似文献   

14.
In statistical learning, regression and classification concern different types of the output variables, and the predictive accuracy is quantified by different loss functions. This article explores new aspects of Bregman divergence (BD), a notion which unifies nearly all of the commonly used loss functions in regression and classification. The authors investigate the duality between BD and its generating function. They further establish, under the framework of BD, asymptotic consistency and normality of parametric and nonparametric regression estimators, derive the lower bound of their asymptotic covariance matrices, and demonstrate the role that parametric and nonparametric regression estimation play in the performance of classification procedures and related machine learning techniques. These theoretical results and new numerical evidence show that the choice of loss function affects estimation procedures, whereas has an asymptotically relatively negligible impact on classification performance. Applications of BD to statistical model building and selection with non‐Gaussian responses are also illustrated. The Canadian Journal of Statistics 37: 119‐139; 2009 © 2009 Statistical Society of Canada  相似文献   

15.
The results of analyzing experimental data using a parametric model may heavily depend on the chosen model for regression and variance functions, moreover also on a possibly underlying preliminary transformation of the variables. In this paper we propose and discuss a complex procedure which consists in a simultaneous selection of parametric regression and variance models from a relatively rich model class and of Box-Cox variable transformations by minimization of a cross-validation criterion. For this it is essential to introduce modifications of the standard cross-validation criterion adapted to each of the following objectives: 1. estimation of the unknown regression function, 2. prediction of future values of the response variable, 3. calibration or 4. estimation of some parameter with a certain meaning in the corresponding field of application. Our idea of a criterion oriented combination of procedures (which usually if applied, then in an independent or sequential way) is expected to lead to more accurate results. We show how the accuracy of the parameter estimators can be assessed by a “moment oriented bootstrap procedure", which is an essential modification of the “wild bootstrap” of Härdle and Mammen by use of more accurate variance estimates. This new procedure and its refinement by a bootstrap based pivot (“double bootstrap”) is also used for the construction of confidence, prediction and calibration intervals. Programs written in Splus which realize our strategy for nonlinear regression modelling and parameter estimation are described as well. The performance of the selected model is discussed, and the behaviour of the procedures is illustrated, e.g., by an application in radioimmunological assay.  相似文献   

16.
This paper addresses the problem of the probability density estimation in the presence of covariates when data are missing at random (MAR). The inverse probability weighted method is used to define a nonparametric and a semiparametric weighted probability density estimators. A regression calibration technique is also used to define an imputed estimator. It is shown that all the estimators are asymptotically normal with the same asymptotic variance as that of the inverse probability weighted estimator with known selection probability function and weights. Also, we establish the mean squared error (MSE) bounds and obtain the MSE convergence rates. A simulation is carried out to assess the proposed estimators in terms of the bias and standard error.  相似文献   

17.
We consider the estimation of a multiple regression model in which the coefficients change slowly in “time”, with “time” being an additional covariate. Under reasonable smoothness conditions, we prove the usual expected mean square error bounds for the smoothing spline estimators of the coefficient functions.  相似文献   

18.
Regularization methods for simultaneous variable selection and coefficient estimation have been shown to be effective in quantile regression in improving the prediction accuracy. In this article, we propose the Bayesian bridge for variable selection and coefficient estimation in quantile regression. A simple and efficient Gibbs sampling algorithm was developed for posterior inference using a scale mixture of uniform representation of the Bayesian bridge prior. This is the first work to discuss regularized quantile regression with the bridge penalty. Both simulated and real data examples show that the proposed method often outperforms quantile regression without regularization, lasso quantile regression, and Bayesian lasso quantile regression.  相似文献   

19.
Abstract

In this article, we study the variable selection and estimation for linear regression models with missing covariates. The proposed estimation method is almost as efficient as the popular least-squares-based estimation method for normal random errors and empirically shown to be much more efficient and robust with respect to heavy tailed errors or outliers in the responses and covariates. To achieve sparsity, a variable selection procedure based on SCAD is proposed to conduct estimation and variable selection simultaneously. The procedure is shown to possess the oracle property. To deal with the covariates missing, we consider the inverse probability weighted estimators for the linear model when the selection probability is known or unknown. It is shown that the estimator by using estimated selection probability has a smaller asymptotic variance than that with true selection probability, thus is more efficient. Therefore, the important Horvitz-Thompson property is verified for penalized rank estimator with the covariates missing in the linear model. Some numerical examples are provided to demonstrate the performance of the estimators.  相似文献   

20.
The varying coefficient model (VCM) is an important generalization of the linear regression model and many existing estimation procedures for VCM were built on L 2 loss, which is popular for its mathematical beauty but is not robust to non-normal errors and outliers. In this paper, we address the problem of both robustness and efficiency of estimation and variable selection procedure based on the convex combined loss of L 1 and L 2 instead of only quadratic loss for VCM. By using local linear modeling method, the asymptotic normality of estimation is driven and a useful selection method is proposed for the weight of composite L 1 and L 2. Then the variable selection procedure is given by combining local kernel smoothing with adaptive group LASSO. With appropriate selection of tuning parameters by Bayesian information criterion (BIC) the theoretical properties of the new procedure, including consistency in variable selection and the oracle property in estimation, are established. The finite sample performance of the new method is investigated through simulation studies and the analysis of body fat data. Numerical studies show that the new method is better than or at least as well as the least square-based method in terms of both robustness and efficiency for variable selection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号