首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   1篇
人口学   1篇
社会学   1篇
统计学   11篇
  2020年   1篇
  2018年   4篇
  2017年   1篇
  2015年   1篇
  2013年   4篇
  2000年   1篇
  1997年   1篇
排序方式: 共有13条查询结果,搜索用时 156 毫秒
1.
Abstract

This study concerns semiparametric approaches to estimate discrete multivariate count regression functions. The semiparametric approaches investigated consist of combining discrete multivariate nonparametric kernel and parametric estimations such that (i) a prior knowledge of the conditional distribution of model response may be incorporated and (ii) the bias of the traditional nonparametric kernel regression estimator of Nadaraya-Watson may be reduced. We are precisely interested in combination of the two estimations approaches with some asymptotic properties of the resulting estimators. Asymptotic normality results were showed for nonparametric correction terms of parametric start function of the estimators. The performance of discrete semiparametric multivariate kernel estimators studied is illustrated using simulations and real count data. In addition, diagnostic checks are performed to test the adequacy of the parametric start model to the true discrete regression model. Finally, using discrete semiparametric multivariate kernel estimators provides a bias reduction when the parametric multivariate regression model used as start regression function belongs to a neighborhood of the true regression model.  相似文献   
2.
We treat a non parametric estimator for joint probability mass function, based on multivariate discrete associated kernels which are appropriated for multivariate count data of small and moderate sample sizes. Bayesian adaptive estimation of the vector of bandwidths using the quadratic and entropy loss functions is considered. Exact formulas for the posterior distribution and the vector of bandwidths are obtained. Numerical studies indicate that the performance of our approach is better, comparing with other bandwidth selection techniques using integrated squared error as criterion. Some applications are made on real data sets.  相似文献   
3.
4.
Functional principal component analysis (FPCA) as a reduction data technique of a finite number T of functions can be used to identify the dominant modes of variation of numeric three-way data.

We carry out the FPCA on multidimensional probability density functions, relate this method to other standard methods and define its centered or standardized versions. Grounded on the relationship between FPCA of densities, FPCA of their corresponding characteristic functions, PCA of the MacLaurin expansions of these characteristic functions and dual STATIS method applied to their variance matrices, we propose a method for interpreting the results of the FPCA of densities. This method is based on the investigations of the relationships between the scores of the FPCA and the moments associated to the densities.

The method is illustrated using known Gaussian densities. In practice, FPCA of densities deals with observations of multidimensional variables on T occasions. These observations can be used to estimate the T associated densities (i) by estimating the parameters of these densities, assuming that they are Gaussian, or (ii) by using the Gaussian kernel method and choosing the matrix bandwidth by the normal reference rule. Thereafter, FPCA estimate is derived from these estimates and the interpretation method is carried out to explore the dominant modes of variation of the types of three-way data encountered in sensory analysis and archaeology.  相似文献   
5.
In this paper, we prove that two multiplicative bias correction techniques (MBC) can be applied for discrete kernels in the context of probability mass function estimation. First, some properties of the MBC discrete kernel estimators (bias, variance and mean integrated squared error) are investigated. Second, the popular cross-validation technique is adapted for bandwidth selection. Finally, a simulation study and a real data application for discrete data illustrate the performance of the MBC estimators based on dirac discrete uniform and triangular discrete kernels.  相似文献   
6.
In this article, we first propose the classical multivariate generalized Birnbaum–Saunders kernel estimator for probability density function estimation in the context of multivariate non negative data. Then, we apply two multiplicative bias correction (MBC) techniques for multivariate kernel density estimator. Some properties (bias, variance, and mean integrated squared error) of the corresponding estimators are also investigated. Finally, the performances of the classical and MBC estimators based on family of generalized Birnbaum–Saunders kernels are illustrated by a simulation study.  相似文献   
7.
8.
Recently, Kokonendji et al. have adapted the well-known Nadaraya–Watson kernel estimator for estimating the count function m in the context of nonparametric discrete regression. The authors have also investigated the bandwidth selection using the cross-validation method. In this article, we propose a Bayesian approach in the context of nonparametric count regression for estimating the bandwidth and the variance of the model error, which has not been estimated in Kokonendji et al. The model error is considered as Gaussian with mean of zero and a variance of σ2. The Bayes estimates cannot be obtained in closed form and then, we use the well-known Markov chain Monte Carlo (MCMC) technique to compute the Bayes estimates under the squared errors loss function. The performance of this proposed approach and the cross-validation method are compared through simulation and real count data.  相似文献   
9.
The fact of estimating how a model output is influenced by the variations of inputs has become an important problematic in reliability and sensitivity analysis. This article is interested in estimating sensitivity indices useful to quantify the contribution of inputs to the variance of model output. A multivariate mixed kernel estimator is investigated since, until now, discrete and continuous inputs have been separately considered in kernel estimation of sensitivity indices. To illustrate the differences between the influence of mixed, discrete, and continuous inputs, analytical expressions of Sobol sensitivity indices are expressed in these three cases for the Ishigami test function. Besides, the performance of the mixed kernel estimator is illustrated through simulations in which the Bayesian procedure is applied for bandwidth parameter choice. An application is also realized on a real example. Finally, the use of an appropriate kernel estimator according to the type of inputs is found to be influential on the accuracy of sensitivity indices estimates.  相似文献   
10.
This paper demonstrates that cross-validation (CV) and Bayesian adaptive bandwidth selection can be applied in the estimation of associated kernel discrete functions. This idea is originally proposed by Brewer [A Bayesian model for local smoothing in kernel density estimation, Stat. Comput. 10 (2000), pp. 299–309] to derive variable bandwidths in adaptive kernel density estimation. Our approach considers the adaptive binomial kernel estimator and treats the variable bandwidths as parameters with beta prior distribution. The best variable bandwidth selector is estimated by the posterior mean in the Bayesian sense under squared error loss. Monte Carlo simulations are conducted to examine the performance of the proposed Bayesian adaptive approach in comparison with the performance of the Asymptotic mean integrated squared error estimator and CV technique for selecting a global (fixed) bandwidth proposed in Kokonendji and Senga Kiessé [Discrete associated kernels method and extensions, Stat. Methodol. 8 (2011), pp. 497–516]. The Bayesian adaptive bandwidth estimator performs better than the global bandwidth, in particular for small and moderate sample sizes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号