首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 786 毫秒
1.
This article proposes semiparametric generalized least-squares estimation of parametric restrictions between the conditional mean and the conditional variance of excess returns given a set of parametric factors. A distinctive feature of our estimator is that it does not require a fully parametric model for the conditional mean and variance. We establish consistency and asymptotic normality of the estimates. The theory is nonstandard due to the presence of estimated factors. We provide sufficient conditions for the estimated factors not to have an impact in the asymptotic standard error of estimators. A simulation study investigates the finite sample performance of the estimates. Finally, an application to the CRSP value-weighted excess returns highlights the merits of our approach. In contrast to most previous studies using nonparametric estimates, we find a positive and significant price of risk in our semiparametric setting.  相似文献   

2.
Abstract

This study concerns semiparametric approaches to estimate discrete multivariate count regression functions. The semiparametric approaches investigated consist of combining discrete multivariate nonparametric kernel and parametric estimations such that (i) a prior knowledge of the conditional distribution of model response may be incorporated and (ii) the bias of the traditional nonparametric kernel regression estimator of Nadaraya-Watson may be reduced. We are precisely interested in combination of the two estimations approaches with some asymptotic properties of the resulting estimators. Asymptotic normality results were showed for nonparametric correction terms of parametric start function of the estimators. The performance of discrete semiparametric multivariate kernel estimators studied is illustrated using simulations and real count data. In addition, diagnostic checks are performed to test the adequacy of the parametric start model to the true discrete regression model. Finally, using discrete semiparametric multivariate kernel estimators provides a bias reduction when the parametric multivariate regression model used as start regression function belongs to a neighborhood of the true regression model.  相似文献   

3.
In this article, a semiparametric time‐varying nonlinear vector autoregressive (NVAR) model is proposed to model nonlinear vector time series data. We consider a combination of parametric and nonparametric estimation approaches to estimate the NVAR function for both independent and dependent errors. We use the multivariate Taylor series expansion of the link function up to the second order which has a parametric framework as a representation of the nonlinear vector regression function. After the unknown parameters are estimated by the maximum likelihood estimation procedure, the obtained NVAR function is adjusted by a nonparametric diagonal matrix, where the proposed adjusted matrix is estimated by the nonparametric kernel estimator. The asymptotic consistency properties of the proposed estimators are established. Simulation studies are conducted to evaluate the performance of the proposed semiparametric method. A real data example on short‐run interest rates and long‐run interest rates of United States Treasury securities is analyzed to demonstrate the application of the proposed approach. The Canadian Journal of Statistics 47: 668–687; 2019 © 2019 Statistical Society of Canada  相似文献   

4.
A semiparametric approach to model skewed/heteroscedastic regression data is discussed. We work with a semiparametric transform-both-sides regression model, which contains a parametric regression function and a nonparametric transformation. This model is adequate when the relationship between the median response and the explanatory variable has been specified by a theoretical result or a previous empirical study. The transform-both-sides model with a parametric transformation has been studied extensively and applied successfully to a number data sets. Allowing a nonparametric transformation function increases the flexibility of the model. In this article, we estimate the nonparametric transformation function by the conditional kernel density approach developed by Wang and Ruppert (1995), and then use a pseudo-maximum likelihood estimator to estimate the regression parameters. This estimate of the regression parameters has not been studied previously. In this article, the asymptotic distribution of this pseudo-MLE is derived. We also show that when σ, the standard deviation of the error, goes to zero (small σ asymptotics), this estimator is adaptive. Adaptive means that the regression parameters are estimated as precisely as when the transformation is known exactly. A similar result holds in the parametric approaches of Carroll and Ruppert (1984) and Ruppert and Aldershof (1989). Simulated and real examples are provided to illustrate the performance of the proposed estimator for finite sample size.  相似文献   

5.
This paper proposes nonparametric estimation methods for functional linear semiparametric quantile regression, where the conditional quantile of the scalar responses is modelled by both scalar and functional covariates and an additional unknown nonparametric function term. The slope function is estimated using the functional principal component basis and the nonparametric function is approximated by a piecewise polynomial function. The asymptotic distribution of the estimators of slope parameters is derived and the global convergence rate of the quantile estimator of unknown slope function is established under suitable norm. The asymptotic distribution of the estimator of the unknown nonparametric function is also established. Simulation studies are conducted to investigate the finite-sample performance of the proposed estimators. The proposed methodology is demonstrated by analysing a real data from ADHD-200 sample.  相似文献   

6.
In this paper, we consider the estimation of partially linear additive quantile regression models where the conditional quantile function comprises a linear parametric component and a nonparametric additive component. We propose a two-step estimation approach: in the first step, we approximate the conditional quantile function using a series estimation method. In the second step, the nonparametric additive component is recovered using either a local polynomial estimator or a weighted Nadaraya–Watson estimator. Both consistency and asymptotic normality of the proposed estimators are established. Particularly, we show that the first-stage estimator for the finite-dimensional parameters attains the semiparametric efficiency bound under homoskedasticity, and that the second-stage estimators for the nonparametric additive component have an oracle efficiency property. Monte Carlo experiments are conducted to assess the finite sample performance of the proposed estimators. An application to a real data set is also illustrated.  相似文献   

7.
This paper is concerned with a semiparametric partially linear regression model with unknown regression coefficients, an unknown nonparametric function for the non-linear component, and unobservable Gaussian distributed random errors. We present a wavelet thresholding based estimation procedure to estimate the components of the partial linear model by establishing a connection between an l 1-penalty based wavelet estimator of the nonparametric component and Huber’s M-estimation of a standard linear model with outliers. Some general results on the large sample properties of the estimates of both the parametric and the nonparametric part of the model are established. Simulations are used to illustrate the general results and to compare the proposed methodology with other methods available in the recent literature.  相似文献   

8.
A partially linear model is a semiparametric regression model that consists of parametric and nonparametric regression components in an additive form. In this article, we propose a partially linear model using a Gaussian process regression approach and consider statistical inference of the proposed model. Based on the proposed model, the estimation procedure is described by posterior distributions of the unknown parameters and model comparisons between parametric representation and semi- and nonparametric representation are explored. Empirical analysis of the proposed model is performed with synthetic data and real data applications.  相似文献   

9.
Härdle & Marron (1990) treated the problem of semiparametric comparison of nonparametric regression curves by proposing a kernel-based estimator derived by minimizing a version of weighted integrated squared error. The resulting estimators of unknown transformation parameters are n-consistent, which prompts a consideration of issues. of optimality. We show that when the unknown mean function is periodic, an optimal nonparametric estimator may be motivated by an elegantly simple argument based on maximum likelihood estimation in a parametric model with normal errors. Strikingly, the asymptotic variance of an optimal estimator of θ does not depend at all on the manner of estimating error variances, provided they are estimated n-consistently. The optimal kernel-based estimator derived via these considerations is asymptotically equivalent to a periodic version of that suggested by Härdle & Marron, and so the latter technique is in fact optimal in this sense. We discuss the implications of these conclusions for the aperiodic case.  相似文献   

10.
The performance of nonparametric function estimates often depends on the choice of design points. Based on the mean integrated squared error criterion, we propose a sequential design procedure that updates the model knowledge and optimal design density sequentially. The methodology is developed under a general framework covering a wide range of nonparametric inference problems, such as conditional mean and variance functions, the conditional distribution function, the conditional quantile function in quantile regression, functional coefficients in varying coefficient models and semiparametric inferences. Based on our empirical studies, nonparametric inference based on the proposed sequential design is more efficient than the uniform design and its performance is close to the true but unknown optimal design. The Canadian Journal of Statistics 40: 362–377; 2012 © 2012 Statistical Society of Canada  相似文献   

11.
A semiparametric method is developed to estimate the dependence parameter and the joint distribution of the error term in the multivariate linear regression model. The nonparametric part of the method treats the marginal distributions of the error term as unknown, and estimates them using suitable empirical distribution functions. Then the dependence parameter is estimated by either maximizing a pseudolikelihood or solving an estimating equation. It is shown that this estimator is asymptotically normal, and a consistent estimator of its large sample variance is given. A simulation study shows that the proposed semiparametric method is better than the parametric ones available when the error distribution is unknown, which is almost always the case in practice. It turns out that there is no loss of asymptotic efficiency as a result of the estimation of regression parameters. An empirical example on portfolio management is used to illustrate the method.  相似文献   

12.
This article considers a nonparametric varying coefficient regression model with longitudinal observations. The relationship between the dependent variable and the covariates is assumed to be linear at a specific time point, but the coefficients are allowed to change over time. A general formulation is used to treat mean regression, median regression, quantile regression, and robust mean regression in one setting. The local M-estimators of the unknown coefficient functions are obtained by local linear method. The asymptotic distributions of M-estimators of unknown coefficient functions at both interior and boundary points are established. Various applications of the main results, including estimating conditional quantile coefficient functions and robustifying the mean regression coefficient functions are derived. Finite sample properties of our procedures are studied through Monte Carlo simulations.  相似文献   

13.
We investigate the asymptotic behaviour of the recursive Nadaraya–Watson estimator for the estimation of the regression function in a semiparametric regression model. On the one hand, we make use of the recursive version of the sliced inverse regression method for the estimation of the unknown parameter of the model. On the other hand, we implement a recursive Nadaraya–Watson procedure for the estimation of the regression function which takes into account the previous estimation of the parameter of the semiparametric regression model. We establish the almost sure convergence as well as the asymptotic normality for our Nadaraya–Watson estimate. We also illustrate our semiparametric estimation procedure on simulated data.  相似文献   

14.
This paper considers robust variable selection in semiparametric modeling for longitudinal data with an unspecified dependence structure. First, by basis spline approximation and using a general formulation to treat mean, median, quantile and robust mean regressions in one setting, we propose a weighted M-type regression estimator, which achieves robustness against outliers in both the response and covariates directions, and can accommodate heterogeneity, and the asymptotic properties are also established. Furthermore, a penalized weighted M-type estimator is proposed, which can do estimation and select relevant nonparametric and parametric components simultaneously, and robustly. Without any specification of error distribution and intra-subject dependence structure, the variable selection method works beautifully, including consistency in variable selection and oracle property in estimation. Simulation studies also confirm our method and theories.  相似文献   

15.
Kai B  Li R  Zou H 《Annals of statistics》2011,39(1):305-332
The complexity of semiparametric models poses new challenges to statistical inference and model selection that frequently arise from real applications. In this work, we propose new estimation and variable selection procedures for the semiparametric varying-coefficient partially linear model. We first study quantile regression estimates for the nonparametric varying-coefficient functions and the parametric regression coefficients. To achieve nice efficiency properties, we further develop a semiparametric composite quantile regression procedure. We establish the asymptotic normality of proposed estimators for both the parametric and nonparametric parts and show that the estimators achieve the best convergence rate. Moreover, we show that the proposed method is much more efficient than the least-squares-based method for many non-normal errors and that it only loses a small amount of efficiency for normal errors. In addition, it is shown that the loss in efficiency is at most 11.1% for estimating varying coefficient functions and is no greater than 13.6% for estimating parametric components. To achieve sparsity with high-dimensional covariates, we propose adaptive penalization methods for variable selection in the semiparametric varying-coefficient partially linear model and prove that the methods possess the oracle property. Extensive Monte Carlo simulation studies are conducted to examine the finite-sample performance of the proposed procedures. Finally, we apply the new methods to analyze the plasma beta-carotene level data.  相似文献   

16.
Semiparametric Analysis of Truncated Data   总被引:1,自引:0,他引:1  
Randomly truncated data are frequently encountered in many studies where truncation arises as a result of the sampling design. In the literature, nonparametric and semiparametric methods have been proposed to estimate parameters in one-sample models. This paper considers a semiparametric model and develops an efficient method for the estimation of unknown parameters. The model assumes that K populations have a common probability distribution but the populations are observed subject to different truncation mechanisms. Semiparametric likelihood estimation is studied and the corresponding inferences are derived for both parametric and nonparametric components in the model. The method can also be applied to two-sample problems to test the difference of lifetime distributions. Simulation results and a real data analysis are presented to illustrate the methods.  相似文献   

17.
Qunfang Xu 《Statistics》2017,51(6):1280-1303
In this paper, semiparametric modelling for longitudinal data with an unstructured error process is considered. We propose a partially linear additive regression model for longitudinal data in which within-subject variances and covariances of the error process are described by unknown univariate and bivariate functions, respectively. We provide an estimating approach in which polynomial splines are used to approximate the additive nonparametric components and the within-subject variance and covariance functions are estimated nonparametrically. Both the asymptotic normality of the resulting parametric component estimators and optimal convergence rate of the resulting nonparametric component estimators are established. In addition, we develop a variable selection procedure to identify significant parametric and nonparametric components simultaneously. We show that the proposed SCAD penalty-based estimators of non-zero components have an oracle property. Some simulation studies are conducted to examine the finite-sample performance of the proposed estimation and variable selection procedures. A real data set is also analysed to demonstrate the usefulness of the proposed method.  相似文献   

18.
This paper presents a Bayesian analysis of partially linear additive models for quantile regression. We develop a semiparametric Bayesian approach to quantile regression models using a spectral representation of the nonparametric regression functions and the Dirichlet process (DP) mixture for error distribution. We also consider Bayesian variable selection procedures for both parametric and nonparametric components in a partially linear additive model structure based on the Bayesian shrinkage priors via a stochastic search algorithm. Based on the proposed Bayesian semiparametric additive quantile regression model referred to as BSAQ, the Bayesian inference is considered for estimation and model selection. For the posterior computation, we design a simple and efficient Gibbs sampler based on a location-scale mixture of exponential and normal distributions for an asymmetric Laplace distribution, which facilitates the commonly used collapsed Gibbs sampling algorithms for the DP mixture models. Additionally, we discuss the asymptotic property of the sempiparametric quantile regression model in terms of consistency of posterior distribution. Simulation studies and real data application examples illustrate the proposed method and compare it with Bayesian quantile regression methods in the literature.  相似文献   

19.
The statistical literature on the analysis of discrete variate time series has concentrated mainly on parametric models, that is the conditional probability mass function is assumed to belong to a parametric family. Generally, these parametric models impose strong assumptions on the relationship between the conditional mean and variance. To generalize these implausible assumptions, this paper instead considers a more realistic semiparametric model, called random rounded integer-valued autoregressive conditional heteroskedastic (RRINARCH) model, where there are essentially no assumptions on the relationship between the conditional mean and variance. The new model has several advantages: (a) it provides a coherent semiparametric framework for discrete variate time series, in which the conditional mean and variance can be modeled separately; (b) it allows negative values both for the series and its autocorrelation function; (c) its autocorrelation structure is the same as that of a standard autoregressive (AR) process; (d) standard software for its estimation is directly applicable. For the new model, conditions for stationarity, ergodicity and the existence of moments are established and the consistency and asymptotic normality of the conditional least squares estimator are proved. Simulation experiments are carried out to assess the performance of the model. The analyses of real data sets illustrate the flexibility and usefulness of the RRINARCH model for obtaining more realistic forecast means and variances.  相似文献   

20.
Abstract.  In this paper, we consider a semiparametric time-varying coefficients regression model where the influences of some covariates vary non-parametrically with time while the effects of the remaining covariates follow certain parametric functions of time. The weighted least squares type estimators for the unknown parameters of the parametric coefficient functions as well as the estimators for the non-parametric coefficient functions are developed. We show that the kernel smoothing that avoids modelling of the sampling times is asymptotically more efficient than a single nearest neighbour smoothing that depends on the estimation of the sampling model. The asymptotic optimal bandwidth is also derived. A hypothesis testing procedure is proposed to test whether some covariate effects follow certain parametric forms. Simulation studies are conducted to compare the finite sample performances of the kernel neighbourhood smoothing and the single nearest neighbour smoothing and to check the empirical sizes and powers of the proposed testing procedures. An application to a data set from an AIDS clinical trial study is provided for illustration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号