首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Epstein [Truncated life tests in the exponential case, Ann. Math. Statist. 25 (1954), pp. 555–564] introduced a hybrid censoring scheme (called Type-I hybrid censoring) and Chen and Bhattacharyya [Exact confidence bounds for an exponential parameter under hybrid censoring, Comm. Statist. Theory Methods 17 (1988), pp. 1857–1870] derived the exact distribution of the maximum-likelihood estimator (MLE) of the mean of a scaled exponential distribution based on a Type-I hybrid censored sample. Childs et al. [Exact likelihood inference based on Type-I and Type-II hybrid censored samples from the exponential distribution, Ann. Inst. Statist. Math. 55 (2003), pp. 319–330] provided an alternate simpler expression for this distribution, and also developed analogous results for another hybrid censoring scheme (called Type-II hybrid censoring). The purpose of this paper is to derive the exact bivariate distribution of the MLE of the parameter vector of a two-parameter exponential model based on hybrid censored samples. The marginal distributions are derived and exact confidence bounds for the parameters are obtained. The results are also used to derive the exact distribution of the MLE of the pth quantile, as well as the corresponding confidence bounds. These exact confidence intervals are then compared with parametric bootstrap confidence intervals in terms of coverage probabilities. Finally, we present some numerical examples to illustrate the methods of inference developed here.  相似文献   

2.
ABSTRACT

Distributions of the maximum likelihood estimators (MLEs) in Type-II (progressive) hybrid censoring based on two-parameter exponential distributions have been obtained using a moment generating function approach. Although resulting in explicit expressions, the representations are complicated alternating sums. Using the spacings-based approach of Cramer and Balakrishnan [On some exact distributional results based on Type-I progressively hybrid censored data from exponential distributions. Statist Methodol. 2013;10:128–150], we derive simple expressions for the exact density and distribution functions of the MLEs in terms of B-spline functions. These representations can be easily implemented on a computer and provide an efficient method to compute density and distribution functions as well as moments of Type-II (progressively) hybrid censored order statistics.  相似文献   

3.
The hybrid censoring scheme, which is a mixture of Type-I and Type-II censoring schemes, has been extended to the case of progressive censoring schemes by Kundu and Joarder [Analysis of Type-II progressively hybrid censored data, Comput. Stat. Data Anal. 50 (2006), pp. 2509–2528] and Childs et al. [Exact likelihood inference for an exponential parameter under progressive hybrid censoring schemes, in Statistical Models and Methods for Biomedical and Technical Systems, F. Vonta, M. Nikulin, N. Limnios, and C. Huber-Carol, eds., Birkhäuser, Boston, MA, 2007, pp. 323–334]. In this paper, we derive a simple expression for the Fisher information contained in Type-I and Type-II progressively hybrid censored data. An illustrative example is provided applicable to a scaled-exponential distribution to demonstrate our methodologies.  相似文献   

4.
Epstein (1954) introduced the Type-I hybrid censoring scheme as a mixture of Type-I and Type-II censoring schemes. Childs et al. (2003) introduced the Type-II hybrid censoring scheme as an alternative to Type-I hybrid censoring scheme, and provided the exact distribution of the maximum likelihood estimator of the mean of a one-parameter exponential distribution based on Type-II hybrid censored samples. The associated confidence interval also has been provided. The main aim of this paper is to consider a two-parameter exponential distribution, and to derive the exact distribution of the maximum likelihood estimators of the unknown parameters based on Type-II hybrid censored samples. The marginal distributions and the exact confidence intervals are also provided. The results can be used to derive the exact distribution of the maximum likelihood estimator of the percentile point, and to construct the associated confidence interval. Different methods are compared using extensive simulations and one data analysis has been performed for illustrative purposes.  相似文献   

5.
Type-I and Type-II censoring schemes are the widely used censoring schemes available for life testing experiments. A mixture of Type-I and Type-II censoring schemes is known as a hybrid censoring scheme. Different hybrid censoring schemes have been introduced in recent years. In the last few years, a progressive censoring scheme has also received considerable attention. In this article, we mainly consider the Bayesian inference of the unknown parameters of two-parameter exponential distribution under different hybrid and progressive censoring schemes. It is observed that in general the Bayes estimate and the associated credible interval of any function of the unknown parameters, cannot be obtained in explicit form. We propose to use the Monte Carlo sampling procedure to compute the Bayes estimate and also to construct the associated credible interval. Monte Carlo Simulation experiments have been performed to see the effectiveness of the proposed method in case of Type-I hybrid censored samples. The performances are quite satisfactory. One data analysis has been performed for illustrative purposes.  相似文献   

6.
Following the work of Chen and Bhattacharyya [Exact confidence bounds for an exponential parameter under hybrid censoring. Comm Statist Theory Methods. 1988;17:1857–1870], several results have been developed regarding the exact likelihood inference of exponential parameters based on different forms of censored samples. In this paper, the conditional maximum likelihood estimators (MLEs) of two exponential mean parameters are derived under joint generalized Type-I hybrid censoring on the two samples. The moment generating functions (MGFs) and the exact densities of the conditional MLEs are obtained, using which exact confidence intervals are then developed for the model parameters. We also derive the means, variances, and mean squared errors of these estimates. An efficient computational method is developed based on the joint MGF. Finally, an example is presented to illustrate the methods of inference developed here.  相似文献   

7.
In this paper, we introduce a new adaptive Type-I progressive hybrid censoring scheme, which has some advantages over the progressive hybrid censoring schemes already discussed in the literature. Based on an adaptive Type-I progressively hybrid censored sample, we derive the exact distribution of the maximum-likelihood estimator (MLE) of the mean lifetime of an exponential distribution as well as confidence intervals for the failure rate using exact distribution, asymptotic distribution, and three parametric bootstrap resampling methods. Furthermore, we provide computational formula for the expected number of failures and investigate the performance of the point and interval estimation for the failure rate in this case. An alternative simple form for the distribution of the MLE under adaptive Type-II progressive hybrid censoring scheme proposed by Ng et al. [Statistical analysis of exponential lifetimes under an adaptive Type-II progressive censoring scheme, Naval Res. Logist. 56 (2009), pp. 687–698] is obtained. Finally, from the exact distribution of the MLE, we establish the explicit expression for the Bayes risk of a sampling plan under adaptive Type-II progressive hybrid censoring scheme when a general loss function is used, and present some optimal Bayes solutions under four different progressive hybrid censoring schemes to illustrate the effectiveness of the proposed method.  相似文献   

8.
This paper proposes an approximation to the distribution of a goodness-of-fit statistic proposed recently by Balakrishnan et al. [Balakrishnan, N., Ng, H.K.T. and Kannan, N., 2002, A test of exponentiality based on spacings for progressively Type-II censored data. In: C. Huber-Carol et al. (Eds.), Goodness-of-Fit Tests and Model Validity (Boston: Birkhäuser), pp. 89–111.] for testing exponentiality based on progressively Type-II right censored data. The moments of this statistic can be easily calculated, but its distribution is not known in an explicit form. We first obtain the exact moments of the statistic using Basu's theorem and then the density approximants based on these exact moments of the statistic, expressed in terms of Laguerre polynomials, are proposed. A comparative study of the proposed approximation to the exact critical values, computed by Balakrishnan and Lin [Balakrishnan, N. and Lin, C.T., 2003, On the distribution of a test for exponentiality based on progressively Type-II right censored spacings. Journal of Statistical Computation and Simulation, 73 (4), 277–283.], is carried out. This reveals that the proposed approximation is very accurate.  相似文献   

9.
Benjamin Laumen 《Statistics》2019,53(3):569-600
In this paper, we revisit the progressive Type-I censoring scheme as it has originally been introduced by Cohen [Progressively censored samples in life testing. Technometrics. 1963;5(3):327–339]. In fact, original progressive Type-I censoring proceeds as progressive Type-II censoring but with fixed censoring times instead of failure time based censoring times. Apparently, a time truncation has been added to this censoring scheme by interpreting the final censoring time as a termination time. Therefore, not much work has been done on Cohens's original progressive censoring scheme with fixed censoring times. Thus, we discuss distributional results for this scheme and establish exact distributional results in likelihood inference for exponentially distributed lifetimes. In particular, we obtain the exact distribution of the maximum likelihood estimator (MLE). Further, the stochastic monotonicity of the MLE is verified in order to construct exact confidence intervals for both the scale parameter and the reliability.  相似文献   

10.
A hybrid censoring scheme is a mixture of Type-I and Type-II censoring schemes. We study the estimation of parameters of weighted exponential distribution based on Type-II hybrid censored data. By applying the EM algorithm, maximum likelihood estimators are evaluated. Using Fisher information matrix, asymptotic confidence intervals are provided. By applying Markov chain Monte Carlo techniques, Bayes estimators, and corresponding highest posterior density confidence intervals of parameters are obtained. Monte Carlo simulations are performed to compare the performances of the different methods, and one dataset is analyzed for illustrative purposes.  相似文献   

11.
The hybrid censoring scheme is a mixture of Type-I and Type-II censoring schemes. Based on hybrid censored samples, we first derive the maximum likelihood estimators of the unknown parameters and the expected Fisher’s information matrix of the generalized inverted exponential distribution (GIED). Monte Carlo simulations are performed to study the performance of the maximum likelihood estimators. Next we consider Bayes estimation under the squared error loss function. These Bayes estimates are evaluated by applying Lindley’s approximation method, the importance sampling procedure and Metropolis–Hastings algorithm. The importance sampling technique is used to compute the highest posterior density credible intervals. Two data sets are analyzed for illustrative purposes. Finally, we discuss a method of obtaining the optimum hybrid censoring scheme.  相似文献   

12.
A hybrid censoring is a mixture of Type-I and Type-II censoring schemes. This article presents the statistical inferences on Weibull parameters when the data are hybrid censored. The maximum likelihood estimators (MLEs) and the approximate maximum likelihood estimators are developed for estimating the unknown parameters. Asymptotic distributions of the MLEs are used to construct approximate confidence intervals. Bayes estimates and the corresponding highest posterior density credible intervals of the unknown parameters are obtained under suitable priors on the unknown parameters and using the Gibbs sampling procedure. The method of obtaining the optimum censoring scheme based on the maximum information measure is also developed. Monte Carlo simulations are performed to compare the performances of the different methods and one data set is analyzed for illustrative purposes.  相似文献   

13.
In this article, point and interval estimations of the parameters α and β of the inverse Weibull distribution (IWD) have been studied based on Balakrishnan’s unified hybrid censoring scheme (UHCS), see Balakrishnan et al. In point estimation, the maximum likelihood (ML) and Bayes (B) methods have been used. The Bayes estimates have been computed based on squared error loss (SEL) function and Linex loss function and using Markov Chain Monte Carlo (MCMC) algorithm. In interval estimation, a (1 ? τ) × 100% approximate, bootstrap-p, credible and highest posterior density (HPD) confidence intervals (CIs) for the parameters α and β have been introduced. Based on Monte Carlo simulation, Bayes estimates have been compared with their corresponding maximum likelihood estimates by computing the mean squared errors (MSEs) of all estimators. Finally, point and interval estimations of all parameters have been studied based on a real data set as an illustrative example.  相似文献   

14.
The Birnbaum–Saunders (BS) distribution is a positively skewed distribution and is a common model for analysing lifetime data. In this paper, we discuss the existence and uniqueness of the maximum likelihood estimates (MLEs) of the parameters of BS distribution based on Type-I, Type-II and hybrid censored samples. The line of proof is based on the monotonicity property of the likelihood function. We then describe the numerical iterative procedure for determining the MLEs of the parameters, and point out briefly some recently developed simple methods of estimation in the case of Type-II censoring. Some graphical illustrations of the approach are given for three real data from the reliability literature. Finally, for illustrative purpose, we also present an example in which the MLEs do not exist.  相似文献   

15.
Arnab Koley  Ayon Ganguly 《Statistics》2017,51(6):1304-1325
Kundu and Gupta [Analysis of hybrid life-tests in presence of competing risks. Metrica. 2007;65:159–170] provided the analysis of Type-I hybrid censored competing risks data, when the lifetime distributions of the competing cause of failures follows exponential distribution. In this paper, we consider the analysis of Type-II hybrid censored competing risks data. It is assumed that latent lifetime distributions of the competing causes of failures follow independent exponential distributions with different scale parameters. It is observed that the maximum likelihood estimators of the unknown parameters do not always exist. We propose the modified estimators of the scale parameters, which coincide with the corresponding maximum likelihood estimators when they exist, and asymptotically they are equivalent. We obtain the exact distribution of the proposed estimators. Using the exact distributions of the proposed estimators, associated confidence intervals are obtained. The asymptotic and bootstrap confidence intervals of the unknown parameters are also provided. Further, Bayesian inference of some unknown parametric functions under a very flexible Beta-Gamma prior is considered. Bayes estimators and associated credible intervals of the unknown parameters are obtained using the Monte Carlo method. Extensive Monte Carlo simulations are performed to see the effectiveness of the proposed estimators and one real data set has been analysed for the illustrative purposes. It is observed that the proposed model and the method work quite well for this data set.  相似文献   

16.
A generalized Type-I progressive hybrid censoring scheme was proposed recently to overcome the limitations of the progressive hybrid censoring scheme. In this article, we provide a robust Bayesian method to estimate the unknown parameters of the two-parameter exponential distribution of a generalized Type-I progressive hybrid censored sample. For each parameter, we derive the marginal posterior density functions and the corresponding Bayesian estimators under the squared error loss function. To assess the proposed method, Monte Carlo simulations are performed using a real dataset.  相似文献   

17.
In this paper, we will introduce a union of two methods of collecting Type-I censored data, namely interval censoring and progressive censoring. We will call the resulting sample a progressively Type-I interval censored sample.We will discuss likelihood point and interval estimation, and simulation of such a censored sample from a random sample of units put on test whose lifetime distribution is continuous. An illustrative example will also be presented.

  相似文献   

18.
《Statistics》2012,46(6):1329-1356
ABSTRACT

Recently Mondal and Kundu [Mondal S, Kundu D. A new two sample type-II progressive censoring scheme. Commun Stat Theory Methods. 2018. doi:10.1080/03610926.2018.1472781] introduced a Type-II progressive censoring scheme for two populations. In this article, we extend the above scheme for more than two populations. The aim of this paper is to study the statistical inference under the multi-sample Type-II progressive censoring scheme, when the underlying distributions are exponential. We derive the maximum likelihood estimators (MLEs) of the unknown parameters when they exist and find out their exact distributions. The stochastic monotonicity of the MLEs has been established and this property can be used to construct exact confidence intervals of the parameters via pivoting the cumulative distribution functions of the MLEs. The distributional properties of the ordered failure times are also obtained. The Bayesian analysis of the unknown model parameters has been provided. The performances of the different methods have been examined by extensive Monte Carlo simulations. We analyse two data sets for illustrative purposes.  相似文献   

19.
In this paper, we focus on exact inference for exponential distribution under multiple Type-I censoring, which is a general form of Type-I censoring and represents that the units are terminated at different times. The maximum likelihood estimate of mean parameter is calculated. Further, the distribution of maximum likelihood estimate is derived and it yields an exact lower confidence limit for the mean parameter. Based on a simulation study, we conclude that the exact limit outperforms the bootstrap limit in terms of the coverage probability and average limit. Finally, a real dataset is analyzed for illustration.  相似文献   

20.
In this paper, based on a jointly type-II censored sample from two exponential populations, the Bayesian inference for the two unknown parameters are developed with the use of squared-error, linear-exponential and general entropy loss functions. The problem of predicting the future failure times, both point and interval prediction, based on the observed joint type-II censored data, is also addressed from a Bayesian viewpoint. A Monte Carlo simulation study is conducted to compare the Bayesian estimators with the maximum likelihood estimator developed by Balakrishnan and Rasouli [Exact likelihood inference for two exponential populations under joint type-II censoring. Comput Stat Data Anal. 2008;52:2725–2738]. Finally, a numerical example is utilized for the purpose of illustration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号