首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
Igor Linkov 《Risk analysis》2012,32(8):1349-1368
Recent severe storm experiences in the U.S. Gulf Coast illustrate the importance of an integrated approach to flood preparedness planning that harmonizes stakeholder and agency efforts. Risk management decisions that are informed by and address decision maker and stakeholder risk perceptions and behavior are essential for effective risk management policy. A literature review and two expert models/mental models studies were undertaken to identify areas of importance in the flood risk management process for layperson, non‐USACE‐expert, and two USACE‐expert groups. In characterizing and mapping stakeholder beliefs about risks in the literature onto current risk management practice, recommendations for accommodating and changing stakeholder perceptions of flood risks and their management are identified. Needs of the U.S. Army Corps of Engineers (USACE) flood preparedness and response program are discussed in the context of flood risk mental models.  相似文献   

2.
The devastating impact by Hurricane Sandy (2012) again showed New York City (NYC) is one of the most vulnerable cities to coastal flooding around the globe. The low‐lying areas in NYC can be flooded by nor'easter storms and North Atlantic hurricanes. The few studies that have estimated potential flood damage for NYC base their damage estimates on only a single, or a few, possible flood events. The objective of this study is to assess the full distribution of hurricane flood risk in NYC. This is done by calculating potential flood damage with a flood damage model that uses many possible storms and surge heights as input. These storms are representative for the low‐probability/high‐impact flood hazard faced by the city. Exceedance probability‐loss curves are constructed under different assumptions about the severity of flood damage. The estimated flood damage to buildings for NYC is between US$59 and 129 millions/year. The damage caused by a 1/100‐year storm surge is within a range of US$2 bn–5 bn, while this is between US$5 bn and 11 bn for a 1/500‐year storm surge. An analysis of flood risk in each of the five boroughs of NYC finds that Brooklyn and Queens are the most vulnerable to flooding. This study examines several uncertainties in the various steps of the risk analysis, which resulted in variations in flood damage estimations. These uncertainties include: the interpolation of flood depths; the use of different flood damage curves; and the influence of the spectra of characteristics of the simulated hurricanes.  相似文献   

3.
Future development in cities needs to manage increasing populations, climate‐related risks, and sustainable development objectives such as reducing greenhouse gas emissions. Planners therefore face a challenge of multidimensional, spatial optimization in order to balance potential tradeoffs and maximize synergies between risks and other objectives. To address this, a spatial optimization framework has been developed. This uses a spatially implemented genetic algorithm to generate a set of Pareto‐optimal results that provide planners with the best set of trade‐off spatial plans for six risk and sustainability objectives: (i) minimize heat risks, (ii) minimize flooding risks, (iii) minimize transport travel costs to minimize associated emissions, (iv) maximize brownfield development, (v) minimize urban sprawl, and (vi) prevent development of greenspace. The framework is applied to Greater London (U.K.) and shown to generate spatial development strategies that are optimal for specific objectives and differ significantly from the existing development strategies. In addition, the analysis reveals tradeoffs between different risks as well as between risk and sustainability objectives. While increases in heat or flood risk can be avoided, there are no strategies that do not increase at least one of these. Tradeoffs between risk and other sustainability objectives can be more severe, for example, minimizing heat risk is only possible if future development is allowed to sprawl significantly. The results highlight the importance of spatial structure in modulating risks and other sustainability objectives. However, not all planning objectives are suited to quantified optimization and so the results should form part of an evidence base to improve the delivery of risk and sustainability management in future urban development.  相似文献   

4.
The development of catastrophe models in recent years allows for assessment of the flood hazard much more effectively than when the federally run National Flood Insurance Program (NFIP) was created in 1968. We propose and then demonstrate a methodological approach to determine pure premiums based on the entire distribution of possible flood events. We apply hazard, exposure, and vulnerability analyses to a sample of 300,000 single‐family residences in two counties in Texas (Travis and Galveston) using state‐of‐the‐art flood catastrophe models. Even in zones of similar flood risk classification by FEMA there is substantial variation in exposure between coastal and inland flood risk. For instance, homes in the designated moderate‐risk X500/B zones in Galveston are exposed to a flood risk on average 2.5 times greater than residences in X500/B zones in Travis. The results also show very similar average annual loss (corrected for exposure) for a number of residences despite their being in different FEMA flood zones. We also find significant storm‐surge exposure outside of the FEMA designated storm‐surge risk zones. Taken together these findings highlight the importance of a microanalysis of flood exposure. The process of aggregating risk at a flood zone level—as currently undertaken by FEMA—provides a false sense of uniformity. As our analysis indicates, the technology to delineate the flood risks exists today.  相似文献   

5.
There is increasing concern over deep uncertainty in the risk analysis field as probabilistic models of uncertainty cannot always be confidently determined or agreed upon for many of our most pressing contemporary risk challenges. This is particularly true in the climate change adaptation field, and has prompted the development of a number of frameworks aiming to characterize system vulnerabilities and identify robust alternatives. One such methodology is robust decision making (RDM), which uses simulation models to assess how strategies perform over many plausible conditions and then identifies and characterizes those where the strategy fails in a process termed scenario discovery. While many of the problems to which RDM has been applied are characterized by multiple objectives, research to date has provided little insight into how treatment of multiple criteria impacts the failure scenarios identified. In this research, we compare different methods for incorporating multiple objectives into the scenario discovery process to evaluate how they impact the resulting failure scenarios. We use the Lake Tana basin in Ethiopia as a case study, where climatic and environmental uncertainties could impact multiple planned water infrastructure projects, and find that failure scenarios may vary depending on the method used to aggregate multiple criteria. Common methods used to convert multiple attributes into a single utility score can obscure connections between failure scenarios and system performance, limiting the information provided to support decision making. Applying scenario discovery over each performance metric separately provides more nuanced information regarding the relative sensitivity of the objectives to different uncertain parameters, leading to clearer insights on measures that could be taken to improve system robustness and areas where additional research might prove useful.  相似文献   

6.
Contemporary studies conducted by the U.S. Army Corps of Engineers estimate probability distributions of flooding on the interior of ring levee systems by estimating surge exceedances at points along levee system boundaries, calculating overtopping volumes generated by this surface, then passing the resulting volumes of water through a drainage model to calculate interior flood depths. This approach may not accurately represent the exceedance probability of flood depths within the system interior; a storm producing 100‐year surge at one point is unlikely to simultaneously produce 100‐year surge levels everywhere around the system exterior. A conceptually preferred approach estimates surge and waves associated with a large set of storms. Each storm is run through the interior model separately, and the resulting flood depths are weighted by a parameterized likelihood of each synthetic storm. This results in an empirical distribution of flood depths accounting for geospatial variation in any individual storm's characteristics. This method can also better account for the probability of levee breaches or other system failures. The two methods can produce different estimates of flood depth exceedances and damage when applied to storm surge flooding in coastal Louisiana. Even differences in flood depth exceedances of less than 0.2 m can still produce large differences in projected damage. This article identifies and discusses differences in estimated flood depths and damage produced by each method within multiple Louisiana protection systems. The novel coupled dynamics approach represents a step toward enabling risk‐based design standards.  相似文献   

7.
In recent years, perception of flood risks has become an important topic to policy makers concerned with risk management and safety issues. Knowledge of the public risk perception is considered a crucial aspect in modern flood risk management as it steers the development of effective and efficient flood mitigation strategies. This study aimed at gaining insight into the perception of flood risks along the Belgian coast. Given the importance of the tourism industry on the Belgian coast, the survey considered both inhabitants and residential tourists. Based on actual expert's risk assessments, a high and a low risk area were selected for the study. Risk perception was assessed on the basis of scaled items regarding storm surges and coastal flood risks. In addition, various personal and residence characteristics were measured. Using multiple regression analysis, risk perception was found to be primarily influenced by actual flood risk estimates, age, gender, and experience with previous flood hazards.  相似文献   

8.
To aid in their safety oversight of large‐scale, potentially dangerous energy and water infrastructure and transportation systems, public utility regulatory agencies increasingly seek to use formal risk assessment models. Yet some of the approaches to risk assessment used by utilities and their regulators may be less useful for this purpose than is supposed. These approaches often do not reflect the current state of the art in risk assessment strategy and methodology. This essay explores why utilities and regulatory agencies might embrace risk assessment techniques that do not sufficiently assess organizational and managerial factors as drivers of risk, nor that adequately represent important uncertainties surrounding risk calculations. Further, it describes why, in the special legal, political, and administrative world of the typical public utility regulator, strategies to identify and mitigate formally specified risks might actually diverge from the regulatory promotion of “safety.” Some improvements are suggested that can be made in risk assessment approaches to support more fully the safety oversight objectives of public regulatory agencies, with examples from “high‐reliability organizations” (HROs) that have successfully merged the management of safety with the management of risk. Finally, given the limitations of their current risk assessments and the lessons from HROs, four specific assurances are suggested that regulatory agencies should seek for themselves and the public as objectives in their safety oversight of public utilities.  相似文献   

9.
Climate change may well lead to an increased risk of river floods in the Netherlands. However, the impacts of changes in water management on river floods are larger, either enhancing or reducing flood risks. Therefore, the abilities of water-management authorities to learn that climate and river flows are changing, and to recognize and act upon the implications, are of crucial importance. At the same time, water-management authorities respond to other trends, such as the democratization of decision making, which alter their ability to react to climate change. These complex interactions are illustrated with changes in river flood risk management for the Rhine and the Meuse in the Netherlands over the last 50 years. A scenario study is used to seek insight into the question of whether current water-management institutions and their likely successors are capable of dealing with plausible future flood risks. The scenarios show that new and major infrastructure is needed to keep flood risks at their current level. Such a structural solution to future flood risks is feasible, but requires considerable political will and institutional reform, both for planning and implementation. It is unlikely that reform will be fast enough or the will strong enough.  相似文献   

10.
Recent studies showed that climate change and socioeconomic trends are expected to increase flood risks in many regions. However, in these studies, human behavior is commonly assumed to be constant, which neglects interaction and feedback loops between human and environmental systems. This neglect of human adaptation leads to a misrepresentation of flood risk. This article presents an agent‐based model that incorporates human decision making in flood risk analysis. In particular, household investments in loss‐reducing measures are examined under three economic decision models: (1) expected utility theory, which is the traditional economic model of rational agents; (2) prospect theory, which takes account of bounded rationality; and (3) a prospect theory model, which accounts for changing risk perceptions and social interactions through a process of Bayesian updating. We show that neglecting human behavior in flood risk assessment studies can result in a considerable misestimation of future flood risk, which is in our case study an overestimation of a factor two. Furthermore, we show how behavior models can support flood risk analysis under different behavioral assumptions, illustrating the need to include the dynamic adaptive human behavior of, for instance, households, insurers, and governments. The method presented here provides a solid basis for exploring human behavior and the resulting flood risk with respect to low‐probability/high‐impact risks.  相似文献   

11.
Although it has been over two decades since Congress passed the Clean Air Act of 1968, ozone in the lower atmosphere remains a serious environmental concern in the United States. Significant scientific progress has been made over the past three decades, yet many important uncertainties remain unresolved. How to manage in a situation characterized by these uncertainties is a major challenge that must be overcome to develop an effective ozone abatement strategy. In this paper, we describe a decision framework for evaluation of alternative ozone abatement strategies. The framework, which embodies two major components-a simulation module and a decision module–incorporates uncertainty in a dynamic decision-making process and enables evaluation of NOx and VOC controls on a systematic basis. We demonstrate the application of the framework through an illustrative analysis to provide insight into the value of flexible ozone abatement strategies in reducing the total cost of achieving air-quality goals and the tradeoffs between the timing and the accuracy of additional information.  相似文献   

12.
Timely warning communication and decision making are critical for reducing harm from flash flooding. To help understand and improve extreme weather risk communication and management, this study uses a mental models research approach to investigate the flash flood warning system and its risk decision context. Data were collected in the Boulder, Colorado area from mental models interviews with forecasters, public officials, and media broadcasters, who each make important interacting decisions in the warning system, and from a group modeling session with forecasters. Analysis of the data informed development of a decision‐focused model of the flash flood warning system that integrates the professionals’ perspectives. Comparative analysis of individual and group data with this model characterizes how these professionals conceptualize flash flood risks and associated uncertainty; create and disseminate flash flood warning information; and perceive how warning information is (and should be) used in their own and others’ decisions. The analysis indicates that warning system functioning would benefit from professionals developing a clearer, shared understanding of flash flood risks and the warning system, across their areas of expertise and job roles. Given the challenges in risk communication and decision making for complex, rapidly evolving hazards such as flash floods, another priority is development of improved warning content to help members of the public protect themselves when needed. Also important is professional communication with members of the public about allocation of responsibilities for managing flash flood risks, as well as improved system‐wide management of uncertainty in decisions.  相似文献   

13.
Coastal flood risk is expected to increase as a result of climate change effects, such as sea level rise, and socioeconomic growth. To support policymakers in making adaptation decisions, accurate flood risk assessments that account for the influence of complex adaptation processes on the developments of risks are essential. In this study, we integrate the dynamic adaptive behavior of homeowners within a flood risk modeling framework. Focusing on building-level adaptation and flood insurance, the agent-based model (DYNAMO) is benchmarked with empirical data for New York City, USA. The model simulates the National Flood Insurance Program (NFIP) and frequently proposed reforms to evaluate their effectiveness. The model is applied to a case study of Jamaica Bay, NY. Our results indicate that risk-based premiums can improve insurance penetration rates and the affordability of insurance compared to the baseline NFIP market structure. While a premium discount for disaster risk reduction incentivizes more homeowners to invest in dry-floodproofing measures, it does not significantly improve affordability. A low interest rate loan for financing risk-mitigation investments improves the uptake and affordability of dry-floodproofing measures. The benchmark and sensitivity analyses demonstrate how the behavioral component of our model matches empirical data and provides insights into the underlying theories and choices that autonomous agents make.  相似文献   

14.
Qing Miao 《Risk analysis》2019,39(6):1298-1313
There has been a growing interest in understanding whether and how people adapt to extreme weather events in a changing climate. This article presents one of the first empirical analyses of adaptation to flooding on a global scale. Using a sample of 97 countries between 1985 and 2010, we investigate the extent and pattern of flood adaptation by estimating the effects of a country's climatological risk, recent flood experiences, and socioeconomic characteristics on its flood‐related fatalities. Our results provide mixed evidence on adaptation: countries facing greater long‐term climatological flooding risks do not necessarily adapt better and suffer fewer fatalities; however, after controlling for the cross‐country heterogeneity, we find that more recent flooding shocks have a significant and negative effect on fatalities from subsequent floods. These findings may suggest the short‐term learning dynamics of adaptation and potential inefficacy of earlier flood control measures, particularly those that promote increased exposure in floodplains. Our findings provide important implications for climate adaptation policy making and climate modeling.  相似文献   

15.
One of the most challenging tasks of homeland security policymakers is to allocate their limited resources to reduce terrorism risks cost effectively. To accomplish this task, it is useful to develop a comprehensive set of homeland security objectives, metrics to measure each objective, a utility function, and value tradeoffs relevant for making homeland security investments. Together, these elements form a homeland security value model. This article develops a homeland security value model based on literature reviews, a survey, and experience with building value models. The purposes of the article are to motivate the use of a value model for homeland security decision making and to illustrate its use to assess terrorism risks, assess the benefits of countermeasures, and develop a severity index for terrorism attacks.  相似文献   

16.
Multicriteria decision analysis (MCDA) has been applied to various energy problems to incorporate a variety of qualitative and quantitative criteria, usually spanning environmental, social, engineering, and economic fields. MCDA and associated methods such as life‐cycle assessments and cost‐benefit analysis can also include risk analysis to address uncertainties in criteria estimates. One technology now being assessed to help mitigate climate change is carbon capture and storage (CCS). CCS is a new process that captures CO2 emissions from fossil‐fueled power plants and injects them into geological reservoirs for storage. It presents a unique challenge to decisionmakers (DMs) due to its technical complexity, range of environmental, social, and economic impacts, variety of stakeholders, and long time spans. The authors have developed a risk assessment model using a MCDA approach for CCS decisions such as selecting between CO2 storage locations and choosing among different mitigation actions for reducing risks. The model includes uncertainty measures for several factors, utility curve representations of all variables, Monte Carlo simulation, and sensitivity analysis. This article uses a CCS scenario example to demonstrate the development and application of the model based on data derived from published articles and publicly available sources. The model allows high‐level DMs to better understand project risks and the tradeoffs inherent in modern, complex energy decisions.  相似文献   

17.
The consequences that climate change could have on infrastructure systems are potentially severe but highly uncertain. This should make risk analysis a natural framework for climate adaptation in infrastructure systems. However, many aspects of climate change, such as weak background knowledge and societal controversy, make it an emerging risk where traditional approaches for risk assessment and management cannot be confidently employed. A number of research developments aimed at addressing these issues have emerged in recent years, such as the development of probabilistic climate projections, climate services, and robust decision frameworks. However, additional research is needed to improve the suitability of these methods for infrastructure planning. In this perspective, we outline some of the challenges in addressing climate change risks to infrastructure and summarize new developments aimed at meeting these challenges. We end by highlighting needs for future research, many of which could be well‐served by expertise within the risk analysis community.  相似文献   

18.
Limited time and resources usually characterize environmental decision making at policy organizations such as the U.S. Environmental Protection Agency. In these climates, addressing uncertainty, usually considered a flaw in scientific analyses, is often avoided. However, ignoring uncertainties can result in unpleasant policy surprises. Furthermore, it is important for decisionmakers to know how defensible a chosen policy option is over other options when the uncertainties of the data are considered. The purpose of this article is to suggest an approach that is unique from other approaches in that it considers uncertainty in two specific ways-the uncertainty of stakeholder values within a particular decision context and data uncertainty in the light of the decision-contextual data-values relationship. It is the premise of this article that the interaction between data and stakeholder values is critical to how the decision options are viewed and determines the effect of data uncertainty on the relative acceptability of the decision options, making the understanding of this interaction important to decisionmakers and other stakeholders. This approach utilizes the recently developed decision analysis framework and process, multi-criteria integrated resource assessment (MIRA). This article will specifically address how MIRA can be used to help decisionmakers better understand the importance of uncertainty on the specific (i.e., decision contextual) environmental policy options that they are deliberating.  相似文献   

19.
Many commentators have suggested the need for new decision analysis approaches to better manage systems with deeply uncertain, poorly characterized risks. Most notably, policy challenges such as abrupt climate change involve potential nonlinear or threshold responses where both the triggering level and subsequent system response are poorly understood. This study uses a simple computer simulation model to compare several alternative frameworks for decision making under uncertainty -- optimal expected utility, the precautionary principle, and three different approaches to robust decision making -- for addressing the challenge of adding pollution to a lake without triggering unwanted and potentially irreversible eutrophication. The three robust decision approaches -- trading some optimal performance for less sensitivity to assumptions, satisficing over a wide range of futures, and keeping options open -- are found to identify similar strategies as the most robust choice. This study also suggests that these robust decision approaches offer a quantitative, decision analytic framework that captures the spirit of the precautionary principle while addressing some of its shortcomings. Finally, this study finds that robust strategies may be preferable to optimum strategies when the uncertainty is sufficiently deep and the set of alternative policy options is sufficiently rich.  相似文献   

20.
Hierarchical decision making is a multidimensional process involving management of multiple objectives (with associated metrics and tradeoffs in terms of costs, benefits, and risks), which span various levels of a large-scale system. The nation is a hierarchical system as it consists multiple classes of decisionmakers and stakeholders ranging from national policymakers to operators of specific critical infrastructure subsystems. Critical infrastructures (e.g., transportation, telecommunications, power, banking, etc.) are highly complex and interconnected. These interconnections take the form of flows of information, shared security, and physical flows of commodities, among others. In recent years, economic and infrastructure sectors have become increasingly dependent on networked information systems for efficient operations and timely delivery of products and services. In order to ensure the stability, sustainability, and operability of our critical economic and infrastructure sectors, it is imperative to understand their inherent physical and economic linkages, in addition to their cyber interdependencies. An interdependency model based on a transformation of the Leontief input-output (I-O) model can be used for modeling: (1) the steady-state economic effects triggered by a consumption shift in a given sector (or set of sectors); and (2) the resulting ripple effects to other sectors. The inoperability metric is calculated for each sector; this is achieved by converting the economic impact (typically in monetary units) into a percentage value relative to the size of the sector. Disruptive events such as terrorist attacks, natural disasters, and large-scale accidents have historically shown cascading effects on both consumption and production. Hence, a dynamic model extension is necessary to demonstrate the interplay between combined demand and supply effects. The result is a foundational framework for modeling cybersecurity scenarios for the oil and gas sector. A hypothetical case study examines a cyber attack that causes a 5-week shortfall in the crude oil supply in the Gulf Coast area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号